Logo


Proven Strength in Stainless

Stainless steel is the material of choice to specify for severe weather conditions.

The overhead netting of Perth Zoo's Australian Wetlands and Penguin Plunge Exhibit was badly damaged when a severe hailstorm and winds of up to 128km/h swept through Perth in March 2010.

During the storm, a tree collapsed onto the netting which was made from a nylon material.

The original concept for this major renovation project was to use stainless steel overhead netting and painted or galvanised steel for the cabling and the majority of other supporting infrastructure components.

However, when ASSDA members Structural Dynamics was awarded subcontractor for the supply and installation of the new overhead netting system, it proposed using stainless steel for all components of the structure, including the cable tension system.

Working closely with Slatter Constructions (head contractor), Thinc Projects (project manager) and Pritchard Francis (structural engineers), stainless steel became the clear choice to provide strength and the crucial ability to withstand severe weather conditions.

Structural Dynamics Managing Director Darren Wills said the team agreed that specifying stainless steel would improve performance, product life cycle and reduce the risk of galvanic reaction.

‘Stainless steel materials break down at a much slower rate than galvanised materials,’ Wills said.

In terms of longevity and durability, stainless steel was the better option given the conditions of the local environment and fresh-water animals.

Slatter Constructions’ Project Manager Rob Murrell added that, on top of providing an aesthetic finish and prolonging the life of the enclosure, using stainless steel for the cables negated the need to ensure separation of different metal types.

Perth Zoo was convinced that stainless steel was the better long-term option and proceeded with stainless steel as the majority materials specification. With a life span of up to 20 years when compared with only up to 10 years using galvanised steel, the increased cost of using stainless was outweighed by the longevity of the product.

The new 91m long x 33m wide x 10m high netting and support structure was completed in early 2012, using the following stainless steel materials:

Backstay column support cables

  • 440m of 16mm and 19mm HAMMA Pro Stand 1x19 AISI316
  • 48 units of 16mm and 19mm Strudyna P2H Adjusters AISI 316

Netting structural support cables

  • 720m of 8mm and 10mm HAMMA Pro Stand 1x19 AISI316
  • 56 units of 8mm and 10mm Strudyna AM Adjusters AISI316

Netting support cables

  • 3900m of 5mm HAMMA x wire rope 7x19 AISI316

Netting

  • 5,400sqm of ClearMesh zoological netting AISI316
  • 15,200m of 1.6mm seizing wire 1x7 AISI304

Rodent proof barrier

  • 300m of 5mm stainless steel angle AISI316 3000m x 150mm x 5mm

Miscellaneous

  • 2,400m of 10mm threaded rod AISI316
  • 600 units of 10mm eye bolts AISI316
  • 600 units of 5mm turnbuckles AISI316

It was pivotal that the new cable structure could cope with extreme one-in-a-hundred year Perth storms, and the high tensile stainless steel structural cable components were ideal for this design parameter. Meeting a range of cable tensions, the HAMMA stainless steel cables installed are rigid to deal with high tensile loads, but also allow for some give to counter the effect of high winds and other harsh weather conditions. Their grade 316 stainless steel construction provides excellent corrosion resistance.

ClearMesh - often used in zoological enclosures globally - was applied to the overhead netting and netting mesh wall that separates the Wetlands from the Penguin Plunge Exhibit within the enclosure. With mesh openings of 2mm, the lightweight and flexible characteristics
of the ClearMesh display a transparent look that complements the landscaped environment and allows for give in case birds fly into the mesh.

Wills said the structure was designed to retain wildlife inside the enclosure and provide a close-to-natural environment for the Australian wetlands wildlife and penguins to thrive in. This resulted in an extremely high level of detail being specified, with stainless steel seizing
wire used every 5mm on the seams of the stainless netting. Over 38,000 hand seizes were performed by the Structural Dynamics team.

As the enclosure was an established site prior to the storm, Perth Zoo required that construction had limited impact on the existing landscaping to assist with animals being reintroduced to their former habitat. Murrell said careful planning between Structural Dynamics and Slatter Constructions ensured the works were completed without harm to the existing vegetation and surrounding areas.

Further construction and landscaping works included a new timber deck walkway for visitors, a limestone block wall and vermin barrier to the perimeter of the wetlands area, an upgraded filtrations system and refurbishment of the existing penguin pool and surrounds.

The renovated enclosure has since survived the June 2012 storm with winds of up to 140km/h, and the cable netting structure and supporting infrastructure today remains as built.

Images courtesy of Structural Dynamics.

This article is featured in Australian Stainless magazine, issue 52.

Stainless Steel and Nickel - 100 Years of Working Together

This is an abridged version of a story that first appeared under the same title in Stainless Steel Focus No. 07/2012.

The Nickel Institute's director of promotion, Peter Cutler, and consultant Gary Coates, reveal some of the reasons for the continuing popularity of nickel in stainless steels.

Stainless steel is everywhere in our world and contributes to all aspects of our lives. We find stainless steel in our homes, in our buildings and offices, in the vehicles we travel in and in every imaginable industrial sector. Yet the first patents for stainless steel were issued only 100 years ago.

How did this metal become so desirable over the past century that more than 32 million tonnes was produced in 2011? And how does nickel, a vital alloying element in most stainless steel alloys, contribute to the high demand for stainless steel?

THE 'CREATION' OF STAINLESS STEEL
By definition, a ‘stainless’ steel has a minimum level of about 10.5% chromium, so the discovery of chromium in 1799 by Nicolas Louis Vauquelin in France was the first key event in the creation of stainless steel. In 1821 another Frenchman, Pierre Berthier, published research that showed a correlation between increasing chromium content and increasing corrosion resistance, but the high carbon content of his alloys prevented them from showing a true ‘stainless’ behaviour.

Still in France, in 1904 Leon Guillet first published his metallographic work on alloys that today would be classified as ferritic and martensitic stainless steel. In 1906 Guillet published his work on the nickel-containing austenitic stainless steel family, but his studies did not include corrosion resistance. Albert Portevin then continued to build on Guillet’s work.

In 1911, a German scientist named Philip Monnartz reported that as the chromium content neared 12% in a steel with a relatively low carbon content, the alloy exhibited ‘stainless’ properties. Further developments then rapidly occurred in many other countries. In the United States, Elwood Haynes started working with martensitic alloys while Becket and Dantsizen were developing a ferritic stainless steel as lead-in wires for electric light bulbs. In 1912, Great Britain’s Harry Brearley worked on a 13% chromium martensitic alloy, initially for high temperature service in exhaust valves for aeroplane engines.

Meanwhile in Germany, Eduard Maurer and Benno Strauss were testing nickel-containingalloys and, in 1912, two patents were awarded. One of these grades, containing about 20% chromium and 7% nickel, was called V2A, and was found to have exceptional corrosion resistance in nitric acid. That grade had a relatively high carbon content compared to today’s stainless steel, and would be
similar to a Type 302 (EN 1.4317) stainless steel. 100 years later, the most commonly used alloy for nitric acid is 304L (EN 1.4307) with approximately 18.5% chromium and 8.5% nickel, quite similar to the V2A composition other than having a much lower carbon content.

Brearley’s martensitic stainless steel alloy would not rust when wet. He worked with Sheffield cutlery manufacturers to forge it into knife blades and then harden it, replacing the carbon steel blades they were then making. Stainless steel knives rapidly became a common household item. However, for forks and spoons, where high hardness was not so important, the 18-8 (302) composition became the most commonly used alloy.

300 SERIES
We normally think of the austenitic or 300 series family of stainless steels as the ‘nickel stainless steels’, but many other families contain nickel. One of the prime reasons for using nickel in the 300 series alloys is that nickel is an austenite former, but other reasons include:

  • Nickel adds corrosion resistance, especially in certain aqueous environments, and in certain high temperature environments.
  • Nickel can retard the formation of embrittling intermetallic phases at elevated temperatures, a major downfall of the non-austenitic families.
  • The austenitic structure can mean high toughness at cryogenic temperatures.
  • The advantages of the 300 series extend to welding and forming operations.

A fuller discussion of these topics can be found in 'The Nickel Advantage - Nickel in Stainless Steels', available on the Nickel Institute website.

200 SERIES
The 200 series stainless steels are also austenitic in structure. The standardised 200 series grades, which have chromium contents close to the level of a 304L alloy (about 18%), have an intermediate level of nickel. The ‘non-standardised’ 200 series not only have lower contents of nickel, but also lower contents of chromium, with the net effect of significantly reduced corrosion resistance, although still an improvement over the 11-13% chromium ferritic stainless steels.

DUPLEX
The duplex (austenitic-ferritic) family of alloys also need some nickel as well as nitrogen to ensure proper austenite formation. Most ‘matching’ duplex filler metals are actually over-alloyed with nickel to ensure that the welds have the required properties.

PRECIPITATION HARDENABLE
The precipitation hardenable (PH) stainless steel family contain nickel, which increases their corrosion resistance, ductility and weldability compared with hardenable non-nickel-containing stainless steel alloys. One of the other major advantages of the PH grades is that, unlike the martensitic grades, they do not need a quenching operation, which considerably reduces risk of distortion. Some of the martensitic grades also contain a small nickel addition. In the higher chromium types, the nickel is needed for the martensitic transition. In all nickel containing martensitic grades, nickel improves their corrosion resistance, ductility and weldability.

Some of the lower alloyed ferritic grades such as UNS S41003 (EN 1.4001) and S40975 contain a small intentional nickel alloying addition that allows for grain size control, which aids especially in welded constructions. A few of the higher alloyed ferritic grades also have a small nickel addition to increase toughness and ductility, which is beneficial during both hot rolling and in their end use.

Clearly, it is important for each specific application to select the appropriate alloy or alloys to give the desired properties.

GROWTH IN DEMAND FOR STAINLESS STEEL
According to the ISSF, 300 series stainless steel still dominates the worldwide production figures, as shown in Figure 1.

The properties of the various 300 series grades - created by the addition of nickel - are clearly valued by users, both in industry and the general public. Upwards of two thirds of all stainless steel produced in 2011 fell within the 300 series and close to three quarters of all stainless steel produced contains nickel.

The growth of worldwide production of stainless steel over the past 100 years has been steady, if not spectacular. This has meant that the demand for new nickel has steadily increased along with the demand for stainless steel, as shown in Figure 2. Recycled stainless steel is also a very important component in the alloy supply chain.

EFFICIENCY AND 'GREEN' CREDENTIALS
Resource efficiency is a recurring theme as the global economy faces economic challenges. Stainless steel not only contributes towards efficiency in many applications, it also shows continuous improvement in the resource efficiency related to stainless steel itself.

There are three important factors:

  1. Stainless steel’s long service life, which might average 15 to 20 years, although much longer in prestigious buildings.
  2. The extent of recycling: The percentage recovered and recycled at end-of-life - around 90% - is amongst the highest of all materials. Moreover, this recycling can be repeated many times without loss of quality. While the recycled content may appear to be relatively low, this is simply a result of stainless steel’s long service life (15 to 20 years) coupled with much lower global production 15 to 20 years ago.
  3. Continual production improvements for stainless steel and its raw materials. For example, whilst the ores being processed today are of lower grade than before, the extraction and recovery processes are more efficient.

THE FUTURE
The history of stainless steel would be incomplete without celebrating the extent to which it has enabled innovation not just in the area of improved performance, but also in the more intangible, aesthetic aspects. From chemical plants to medical equipment to iconic stainless steel-clad buildings, stainless steel has made - and will continue to make - a major contribution to almost every aspect of our lives.

With durability, recyclability, versatility and aesthetic appeal at the core of its appeal, stainless steel - with nickel as one of its trusted alloys - is well placed to continue to innovate and expand its applications.

STAINLESS STEEL IN USE

FOOD AND BEVERAGE INDUSTRY
The popularity of stainless steels in kitchens did not go unnoticed in the food and beverage industry.

If we take milk, we know of an early stainless steel bulk milk tank truck from 1927 in the USA. A paper entitled ‘The Corrosion of Metals by Milk’ from the January 1932 Journal of Dairy Science by Fink and Rohrman states: ‘It has long been known that milk in contact with iron and copper will not only acquire a metallic taste, but corrode these metals readily’. At that time, tin-coated metals were commonly used. It went on to say that ‘High chromium nickel (18-8) iron alloys … are very resistant to corrosion by milk and are satisfactory for dairy equipment …’. The modern milk processing industry is filled with stainless steel equipment, mostly of Type 304 (EN 1.4301) or 304L.

The report also went on to state that some materials that are otherwise suitable for processing of milk ‘…do not stand up well to the action of cleaning compounds that are commonly used in dairies’, but that the 18-8 alloy was suitable for those cleaning compounds. Today, the typical cleaning acids and hypochlorite sanitising compounds that are used not only in the dairy industry but also in most food and beverage plants worldwide, require that same 18-8 alloy as a minimum. A correctly chosen stainless steel alloy will not change the taste or appearance
of the food product. However, it is the ability to withstand repeated use of the sanitising chemicals over the lifetime of the equipment that has led to the widespread use of stainless steel in all sectors of the food and beverage industry. Producers are then able to guarantee the
safety of their food products.

ARCHITECTURE
Another area of quick acceptance was in architecture. The first recorded use for that purpose was in 1929 in London at the Savoy Hotel where a sidewalk canopy and a sign were erected with the 18-8 alloy. These were soon followed by two iconic skyscrapers in New York that used stainless steel as a dominant element on their exteriors: the Chrysler Building in 1930 and the Empire State Building in 1931.

Since then, many prestigious buildings around the world have used stainless steel, including the Petronas Tower in Kuala Lumpur, the Trump Tower in Chicago, and the Jin Mao Tower in Shanghai. Related to architecture is sculpture, and Isamu Noguchi convinced the Associated Press in 1940 to approve stainless steel instead of bronze for his sculpture above the entrance to its building in New York. Since then, artists around the world have been using stainless steel, mostly either 304L or 316L (EN 1.4404), in their works. The St Louis Arch in the USA, Frank Gehry’s Peis (Fish) in Barcelona, Spain, and more recently Genghis Khan in Mongolia are examples of what can be done with stainless steel.

TRANSPORTATION
During the Great Depression in the USA, Edward Budd realised the untapped potential for stainless steels. Although their use in aeroplanes was his first application, his legacy remains the building of more than 10,000 passenger railcars, some of them still in use today.

Around the world, stainless steel is used extensively for passenger rail cars for subways, commuter trains and long distance trains, ensuring safety plus long life and low maintenance costs. In addition, stainless steels are used to transport cargoes such as food products, petroleum products and corrosive chemicals by rail, road, water and even air, both domestically and internationally.

ENERGY
In the broad field of energy, stainless steels have been used to extract oil and gas containing hazardous substances as well as for use in the refining stages. For power plants, stainless steel is used extensively at both low and high temperatures, whether the fuel is coal, oil, gas, uranium or waste products. Hydroelectric stations use stainless steel for dam gates as well as turbines. Many of the established sustainable
energy technologies such as solar and geothermal are using stainless steel, as well as the present biofuels industry with corn or sugar cane as feed stock.

WATER
Fresh water is an essential commodity for mankind, and stainless steel is used extensively in treatment plants for potable water as well as for wastewater. Cost effectively producing fresh water from seawater or brackish water by desalination also requires the use of stainless steel. In some countries, underground stainless steel pipe is used to deliver potable water to homes to prevent leakage, or in other special cases to protect either the environment outside the pipe or the water inside the pipe. Stainless steel plumbing is also common in certain countries and offers a long lasting, low maintenance option.

SURGERY
The first recorded example of an austenitic stainless steel surgical implant is from 1926. Medical instruments are also known from that time period. The ability to easily and repeatedly sterilise components that come in contact with the human body or are used in hospitals and clinics contributed to the early acceptance of stainless steel. Today, there are well-established international specifications for materials used in this industry. For example, stainless steel alloys for implants must meet stringent metallurgical cleanliness requirements and be completely non-magnetic so that the patient can safely undergo diagnosis by Magnetic Resonance Imaging.

FUTURE USES OF STAINLESS STEEL
Strong growth in the use of stainless steel has continued in the past decades despite the rapid and diverse developments in other materials and the more recent economic turmoil. The nickel-containing alloys in the 300 series still account for nearly two thirds of current stainless steel production worldwide, and there is nickel in the 200 series, duplex and precipitation hardening families, as well as in some of the martensitic and ferritic alloys. The reason for this is the great value that is placed on the properties which nickel provides.

Society is rapidly evolving and facing challenges on a global scale. Population is increasing, expectations are growing and resources are limited. Therefore we must use those resources more efficiently. This is particularly apparent for energy where stainless steel, and especially the nickel-containing alloys, already plays a major role in the more difficult to extract fossil fuels. Stainless steel’s corrosion and heat resisting properties are key to more cost-efficient operations. This also applies to the renewable sources that are now being developed, such as wave power and biofuels from new organic sources.

The worldwide need for higher quality, safe food and beverages and water will only increase, especially as food products can come from anywhere in the world. Stainless steel has evolved as the material of choice in this industry, both industrially and domestically, and it is likely to continue to meet the demands of a global population that is predicted to increase to nine billion by 2050.

This growing population, combined with a rapid movement to urbanisation, requires an expanded and more efficient transport infrastructure. The characteristics of stainless steel enable it to deliver lightweight and durable designs, leading to more efficient performance, safety, lower energy requirements and reduced emissions while giving lower life-cycle costs.

Image of Trump Tower (Chicago, USA) pictured above courtesy of C.Houska.

This article is featured in Australian Stainless magazine, issue 52.

A Stainless Facelift for Surfers Paradise

Stainless is a key feature in the urban design and revamp of one of the Gold Coast's most iconic and vibrant tourist destinations.

The $25 million Surfers Foreshore Project was commissioned by the Gold Coast City Council (GCCC) to redevelop the beachfront area between Laycock Street and View Avenue in Surfers Paradise.

Aimed at improving infrastructure and visitor recreation, the new promenade features new lifeguard towers, amenity blocks, beach shelters, picnic areas with barbeques, and increased pedestrian and disability access to the beach.

Managing Contractor Abigroup Contractors Pty Ltd appointed ASSDA member and Accredited Fabricator J&T Mechanical Installation to fabricate and install the stainless steel architectural handrails and balustrades across stages 1, 2 and 3.

Trent Todd, J&T Mechanical Installation’s Director, said that with the handrails and balustrades being installed less than 30m from the shoreline, stainless steel was the only choice to withstand the harsh coastal environment to help resist tea staining and ensure long-term durability and performance.

A 2009 GCCC study in affiliation with Griffith University saw the GCCC adopt stainless steel as the default specification for structures with a design life of more than 19 years in foreshore zones.

This followed research results showing the material required lower maintenance and was the most effective in life cycle costs when compared with hot dipped galvanized (HDG) steel, paint systems and duplex systems using both HDG and paint.

At a total cost of approximately $80,000, the stainless steel handrails and balustrades span 1300m across the esplanade that fronts Surfers Paradise Beach.

Grade 316L stainless steel was specified for these elements of the project, which included 36 sheets of 10mm thick plate measuring 1500mm x 3000mm supplied by ASSDA member Allplates. ASSDA Sponsor STM Tube Mills Pty Ltd supplied 1300m of 50.8mm x 1.6mm thick tube. Another 3500m of 1/4” wire was also sourced for the balustrading.

All the flat and tube components including 124 stanchions were laser cut and folded by Allplates.

Stanchions and base plates were machine polished to 600 grit by ASSDA member and Accredited Fabricator Minnis & Samson to give the stainless steel an even polish and the stanchions a square edge. The stanchions were electropolished before being delivered back to J&T Mechanical Installation’s workshop for assembly.

J&T Mechanical Installation fabricated the top (50.8mm x 1.6mm tube) and bottom (folded channel, 4mm thick) rail frames with two vertical 16mm diameter solid round bar intermediate supports. Infill wires at 6.4mm diameter were positioned with swage fittings and lock nuts on each end to construct the vertical balustrades.

On site, J&T Mechanical Installation completed civil works prior to installation, including pre-drilling with the fasteners for the base plates to which the stanchions were then bolted. The rail frames were welded to the stanchions in 2.1m sections.

Following installation, a proprietary stainless steel cleaner was applied to remove any oxides, and a mild cleaner was followed to provide surface protection and inhibit corrosion.

Architectural feature lighting was installed to illuminate the pedestrian walkways at night.

The Surfers Foreshore Project was completed in April 2011 and today continues to thrive as the Gold Coast’s most popular entertainment precinct where city meets the surf.

Images courtesy of Allplates.

This article is featured in Australian Stainless magazine, issue 51.

Chimpanzee Sanctuary

Where Strength Meets Style

Innovation in zoo enclosure design is a key feature of the recently completed $7.5 million makeover of the Chimpanzee Sanctuary at Sydney’s Taronga Zoo.

The project brief was to create a chimpanzee habitat akin to their native home that would encourage social interaction and allow the zoo’s primate keepers to manage animal husbandry and the group’s changing demographic. The enclosure’s transparency and the ability to withstand the chimpanzee’s remarkable strength and intelligence were essential.

ASSDA member Ronstan Tensile Architecture was contracted by the builder, the Lipman Group, to be the specialist contractor for the technical design and installation of a mesh enclosure and non-climbable wall. Ronstan’s unique capability in tensile architecture and their technical expertise were a natural fit for this challenging project designed by Jackson Teece Architects.

The Sanctuary features the mesh separation paddock (similar to an aviary), at one end of the main exhibit. A non-climbable wall with a removable curtain, allows both spaces to function as one large paddock. This enables introductions of new chimpanzees into the compound and helps manage the apes’ complex behaviour patterns.

Ronstan Tensile Architecture’s General Manager, Rowan Murray, said the non-climbable wall structure was one of the most the challenging design aspects.

“The architect’s greatest challenge was to separate the chimpanzees physically, but still have them all in view in the paddock. We had to build a wall that was transparent, had openings of no more than 5mm to avoid chimpanzees putting their fingers in and climbing, and could withstand the strength of chimpanzees.” Mr Murray said.

The structural complexity of the non-climbable wall required 3D modelling to analyse design configurations and ensure structural integrity. Test panels of the non-climbable wall were fabricated and assessed in the chimpanzees’ temporary enclosure to determine which would offer the safest containment of the site and minimise visibility.

Mr Murray said the primary structure for the wall consists of a Ronstan supplied tensile cable net that supports semi-transparent perforated stainless steel panels.

“Most materials can be damaged, but the durability of stainless steel panels of certain perforation proved to be the right solution and important in the development of the overall design,” he said.

“The non-climbable wall had been designed with wall panels clamped directly to the enclosure mesh face. In a collaborative effort, we changed this to an independent cable net structure to remove the risk of having the final wall shape differ from that modelled, and in doing so, avoided the risk of panel geometry differing from the complex 10 degree incline necessary for non-climbability. This also ensured uniform set out and fixing methods, more consistent panel shapes and allowed the panel geometry to drive the wall structure rather than this being determined by other elements.”

ASSDA member, Locker Group, supplied the grade 304 stainless steel panels, which were perforated to 50%. A black painted finish was applied before installation.

With stringent performance characteristics to adhere to, including long-term corrosion resistance and aesthetics, Carl Stahl X-Tend stainless steel mesh was specified for the separation enclosure and the removable curtain within the non-climbable wall. The stainless steel mesh was blackened using an electrolytic process to increase transparency of the enclosure.

Trevor Williams, Lead Consultant of Jackson Teece and Project Architect for the development, said materials selection was critical in delivering the aesthetic appeal and longevity of the enclosure.

“We spoke with Ronstan Tensile Architecture for technical design advice in the early stages of the project. There were various other types of meshes that were a possibility but, being a dynamic structure, alternate materials were far too rigid and not as flexible as the Carl Stahl X-Tend stainless steel mesh. I don’t think we could have achieved this outcome with any other mesh,” Mr Williams said.

“The stainless steel will have a longer life in the aggressive south-facing coastal environment. The blackened mesh has a fantastic form and from an architectural point of view, has achieved an organic appearance.”

Ronstan Tensile Architecture’s contribution to the project, including the tensile mesh enclosure and non-climbable wall, cost about $1.2 million and took 16 weeks to construct.

Mr Murray said the stainless steel demonstrates a great mix of strength and transparency, and the end tensile result is very forgiving.

“Achieving the architectural intent involved complex modelling and finite analysis of the mesh form to ensure the surrounding structures could be designed to support the enclosure loads. Ronstan is absolutely rapt with the state-of-the-art structure,” he said.

The paddock was completely re-landscaped and the impressive exhibit also now features several climbing platforms at varying heights of up to 12 metres, and a 180 kilogram hammock for the chimpanzees to enjoy.

The 17 lucky Taronga Zoo chimpanzees moved in to their renovated home in late September 2011.

QUANTITIES AND GRADES OF STAINLESS STEEL USED

›    Mesh enclosure 770m² of 3mm Ø x 60mm blackened stainless steel, grade 316 Carl Stahl X-Tend mesh.
›    Non-climbable wall facade 140m² of grade 304 stainless steel perforated to 50%, with a black painted finish.
›    Cables 1x19 construction 8mm, 12mm and 22mm diameter, grade 316 stainless steel cables. The stainless steel cable end fittings and  components were polished and passivated prior to installation.

Images courtesy of Ronstan Tensile Architecture.

This article features in Australian Stainless magazine - Issue 50, Summer 2011/12.

Reflected Glory

Stainless steel’s star has ascended in the public’s conscience as thousands of Westfield Sydney shoppers enjoy the world-class design and materials on show in its newest retail development.

Covering 103,000m2, the $1.2 billion Westfield Sydney development is bound by the Pitt Street Mall and Market and Castlereagh Streets in the heart of Sydney’s CBD. It integrates Westfield Centrepoint, the Centrepoint Convention Centre, Imperial Arcade and Skygarden, plus a new office tower at 85 Castlereagh Street and an extensively modified and refurbished tower at 100 Market Street.

While the size of the project is enormous, it’s the design that’s turning heads. With a nod to lauded international developments in Paris and Frankfurt, the architects of Westfield Sydney have created a stunning environment that makes extensive use of mirror and hairline finished stainless steel in the interior spaces.

Stainless steel was chosen by Westfield’s architects to create a very upmarket, stylish environment for shoppers. In addition to meeting the design intent, stainless steel also offers durability and ease-of-use during construction.

ASSDA Accredited Townsend Group was chosen to design, fabricate and install stainless steel elements throughout the complex, a task it was confident to undertake due to its experience delivering exceptional quality products to exacting clients, such as Apple Inc.

Townsend was awarded the following elements using only 316 grade stainless steel:

›    8,500m2 of mirror-finished stainless steel troughs and particle board infills in the feature ceilings on levels 3 and 4
›    Composite stainless steel panel cladding of the escalators on all levels
›    Black glass and mirror-finished stainless steel on the escalator soffits in void 4
›    Hairline-finished stainless steel composite panel cladding in voids 1 to 10
›    Mirror-finished stainless steel cladding of the elliptical column in void 1 from levels 1 to 5.

The project’s innovative design and engineering required the use of Townsend’s Vee-Cutter, the only one of its type in Australia, to create a very tight radii on the corners on some of the architectural elements. No additional services or treatments were required before or after installation as the stainless steel was procured with a protective film that remained on the product through the manufacturing process until the installation was complete.

Townsend Managing Director and CEO Russ Hill stated that the company was excited when selected for this prestigious development. The complexity of the project presented many challenges which Townsend was able to meet through its skill and experience, resulting in a finish which met the brief set by Westfield and its architects.

Images courtesy of Townsend Group.

This article is featured in Australian Stainless magazine - Issue 50, Summer 2011/12.

Common specifications for flat products

Stainless steels are now cheaper than ever, but there is still room to minimise costs (see Table 1), which will improve the bottom line for individual companies, projects and the industry as a whole.

Flat productsAustralia is a relatively 'small fish' in the global stainless industry and, without the benefit of local stainless steel production, loses some flexibility on product availability. Unless you're a very large consumer of stainless steel to a single specification or Standard, ordering to common specifications will reduce costs and increase availability of products.

Flat Products - Table 1Suppliers are likely to have products to common specifications. Ordering them reduces the need for slow moving stock, increases stock turns, raises the size of single orders, and can substantially reduce costs. A similar mechanism works for mill or mill indent orders.

Flat products

Until recently, stainless steel flat products manufactured to Australian Standard 1449 were the most widely available in Australia. However, since the closure of BHP Stainless in 1997, products manufactured to this Standard are no longer commonly produced. More common international specifications will need to be recognised in Australia if economies are to be achieved (see Table 2).

Fortunately, the transition may not be difficult, because AS1449 was closely aligned with the ASTM Standards from the USA, which are also similar to the Japanese JIS Standards. Steels identical to AS1449 in nomenclature, chemical composition, mechanical properties and surface finish are readily available internationally.

Today the most commonly available stainless flat product in Australia is manufactured abroad to ASTM A2401A240M Standard specification for heat resisting chromium and chromium-nickel stainless steel plate, sheet and strip for pressure vessels, which nominates ASTM A4801A480M for additional general requirements of the steel ('M' designates the metric version, which is more appropriate in Australia).

European specifications are also emerging and EN 10088 Stainless steels has the potential to become a common specification in the Australian market. EN 10088 makes use of the established German names and numbers for stainless steel grades, Many grades in EN 10088 have close equivalents in the ASTM based Standards, but the nomenclature for grades and finishes is very different and replacements should be examined carefully. For example, in AS1449, ASTM A240M and JIS G4305, grade 304 (the most common stainless) has a minimum of European specifications are also emerging and EN 10088 Stainless steels has the potential to become a common specification in the Australian market. EN 10088 makes use of the established German names and numbers for stainless steel grades. Many grades in EN 10088 have close equivalents in the ASTM based Standards, but the nomenclature for grades and finishes is very different and replacements should be examined carefully. For example, in AS1449, ASTM A240M and JIS G4305, grade 304 (the most common stainless) has a minimum of Ordering at standard width and thickness is the best way to keep steel costs down. Each mill has equipment capable of a certain maximum width and running narrower steel is less productive.

The standard width varies from mill to mill (see Table 3), with most European mills manufacturing at 1,200mm or 1,250mm wide, with a few capable of 1,500mm and, for some thicker coil products, 2,000mm. Mills in Asia tend to standardise on the imperial widths 3', 4' and 5' (914mm, 1,219mm, 1,524mm).

Conclusions

An understanding of commonly used specifications can lead to more efficient and cheaper practices. If questions arise, your supplier or fabricator may have information on alternative Standards that are more commonly available and more suited to your requirements.

Flat Products - Table 2

 

This article featured in Australian Stainless Issue 11 - March 1998. More current information can be found in ASSDA's Australian Stainless Reference Manual.

Stainless a winner for roof cladding

Kuala Lumpur's new international airport terminal will open within a month and travellers will be sheltered by a A$17 million stainless steel roof which has largely been developed by Australian expertise and innovation.

KL airportThe roof profile of the contact piers and air bridges (60,000m2 total area) had to satisfy a number of criteria, including rainwater runoff, resistance to wind uplift, and a smooth, painted appearance. The roof area comprises a composite system with an outer metal membrane of fully-welded stainless steel. Further complicating the design, the architect (MJAC) wanted to avoid valley gutters on the roof's curves.

Around 280 tonnes of 0.4mm grade 316 stainless were used for the roof and unique, tapered sheet, roll forming technology was developed to accommodate curvatures in the roof. While rollforming is normally used on parallel edge products, Chadwick Technology (Forestville, NSW) and Horton Engineering (New Zealand) developed a rollformer which was capable of rolling roof sheet in excess of 20 metres long, with the edges tapering to a pre-determined dimension. All of the taper, shear and rollforming equipment was computer controlled to obtain correct dimensions.

Similarly, a fully automated welding system was designed to weld at 5 metres/minute (resulting in a total of 125km of welding), with the generated heat being water cooled. Fixing clips, which were welded within the seam roof, had to allow for thermal movement of up to 20mm. To provide the unwelded surface appearance, a rib cap was designed to conceal all the welds, fixings and unpainted sections.

Bill Mansell, Chadwick's Engineering Director, said MJAC specified stainless steel to provide the client with a lifetime investment in maintenance free roofing. The stainless steel sheet, which was coil coated with a dark green fluorocarbon PVf2, was supplied by Avesta Sheffield (Castle Hill, NSW) and special end fascia and architectural trims were fabricated by the Townsend Group (Mortdale, NSW).

The airport is opening in February/March this year and it will be fully operational for the Commonwealth Games in September 1998. The roof, which is a finalist in the Gold Circle Award for Innovative Roofing from the USA's National Roofing Contractors Association, is certain to give international visitors to Kuala Lumpur a strong, visual impression of Australia's design and fabrication capabilities.

This article featured in Australian Stainless Issue 11 - March 1998.

Chifley stands the test of time

Sydney's recently redeveloped Chifley Square now pays tribute to its namesake in a dramatic, yet personable, manner - an 8m tall stainless steel sculpture of Ben Chifley towers over the square, forming part of City of Sydney's capital works program in the lead up to the Sydney 2000 Olympics.

Chifley_3Sydney artist Simeon Nelson designed 'Ben Chifley' and a glass and stainless steel wall on the site while working as part of the multi-disciplinary design team involved in the site's $3 million redevelopment. Hassell architects (Sydney) were given open guidelines for the design of the site, but two of the objectives were to see Chifley appropriate recognised and to provide a windbreak on the Hunter Street side of the square.

Nelson specified 5 tonnes of 20mm grade 316 stainless plate for two cut-out images of the former war-time treasurer and the post-war Labor prime minister. The plates are positioned in parallel and bolted to a stainless frame, allowing 1mm tolerances.

Nelson designed the sculpture in stainless steel because of its long-term durability. He also felt the material was appropriate because it is often used as an industrial product and Chifley kick-started industrial growth after the war.

The sculpture was fabricated by CBD Prestige Metal Works (Sydney) from material supplied by Sandvik Australia (Smithfield, NSW). After shotblasting by IMP (Sydney), the final surface finishing and passivating was carried out by BHM Stainless Technology Group (Keon Park, Vic) using a specialised process developed by the company for unusual projects of this nature.

Chifley_wallSimilarly impressive is the 'Lightwall, Crucimatrilux' (also fabricated by CBD), which incorporates panes of transparent glass bolted together on nine stainless frames made of 74mm x 20mm bar with a mill finish. Because of the fine tolerances required, dowel and glue were used instead of welds to hold the frames together.

The 10.8m long and 3.2m tall wall serves a structural function as an extension of the back wall of the cafe and also acts as a wind shelter. visually, it provides a contrast with cafe's wall, which is made from white coated glass.

The redevelopment of the site, which is semi-circular in shape and divided in half by Philip Street, was aimed at unifying the two spaces to reflect the original intent of the site's 1937 design. Together, the Lightwall and Chifley sculpture form part of an impressive, contemporary response to historic town planning.

This article featured in Australian Stainless Issue 11, March 1998.

Let the Games Begin!

When millions around the world watch the Sydney Olympic Games this September, they will also be experiencing the best of Australian architecture, with particular emphasis on stainless steel.

Stadium Australia, located at Homebush Bay in Sydney's inner city in the centrepiece of the Olympic site. Here, events such as the opening and closing ceremonies and the track and field program will be played out. Closer examination of the sit reveals the use of stainless steel in a myriad of applications, both aesthetic and functional. Perhaps more importantly, the use of stainless steel helps meet the organiser's "green" commitment: to use materials with minimal impact on the environment and designs that reduce waste and conserve resources.

THE STADIUM
Seating 110,000, Stadium Australia is the largest stadium in the history of the Olympic Games. To give an idea of its size, the two main curved trusses span 296 metres and four Boeing 747s would fit side by side under the span of the main arch.

The roofing material was supplied by ASSDA member Atlas Steels (Australia) Pty Ltd, the handrails by ASSDA member Sandvik Australia.

Nineteen lighting towers, representing the number of cities in which the Olympic Games have been held to date, stand like sentinels guarding the entrance to Stadium Australia.

The towers consist mostly of concrete and painted steel, but grade 316 stainless steel rods, 25 millimetres in diameter, provide tension in each corner, while 316 doors and infill panels, with a No. 4 finish, exist at ground level.

The names of each of the cities where the Games have been held are glass-bead blasted on to grade 316 sheet with a No. 4 finish.

These towers each carry solar panels that contribute to the public elecricity grid an amount of power equal to that consumed by the towers at night.

At the bottom of one of the towers is a Munich Memorial to honour the athletes who died at the 1972 Munich Olympics. The memorial consists of three plaques fabricated from grade 316 stainless steel and glass, the names being engraved and paint filled in a surface with a No. 4 finish. Stainless steel channel sections, glass bead blasted on the inside and mirror polished were used around some of the edges.

Spread over six levels, the kitchens at Stadium Australia will see almost as much action as the field! Anticipated to feed about 110,000 people every day during competition, the kitchens have been fitted out with stainless steel equipment including benches, exhaust hoods, 200 deep-fat fryers and 300 upright refrigerators. ASSDA members Curtin Foodservice Equipment Pty Ltd supplied a bulk of the equipment, including over four and a half kilometres of stainless steel benches, 145 stainless steel hi-velocity extraction hoods, 200 deep-fat fryers, bain maries, refrigeration equipment, bulk and plated hot food holding carts and more than 200 mobile trolleys. Grade 304 stainless steel for the equipment was provided by ASSDA member Fagersta Steel.

THE OLYMPIC VILLAGE
Home to 15,000 athletes, officials and coaches during competition, the Olympic Village reflects stainless steel's contribution to the "Green Games". 6,000 kilograms (10,500 square metres) of grade 316 stainless steel mesh were installed to provide a chemical-free termite barrier to over 500 houses in the Village.

Fabricated and installed by Termi-Mesh Sydney Pty Ltd, the stainless steel mesh provides a physical barrier around the building perimeter and is collar clamped to pipes and other entry points. The result is a permanent obstruction to termites that eliminates the use of potentially dangerous chemicals.

OLYMPIC BOULEVARD
Olympic Boulevard, which passes key venues such as Stadium Australia and the Aquatic Centre, features spectacular fountains with stainless steel components.

Water jets, each covered by a grade 316 stainless steel cowl, provide a cascading arch at Fig Grove.

Fabricated grade 316 stainless steel gratings, black chrome plated so they are almost invisible under water, are used as safety screens. Grade 316 sections are also used to ensure the water cascades evenly along the length of the feature and as structural supports.

At the far end of the Boulevard is a fountain featuring lines of tubular water jets. Each jet comprises an inner structure of grade 316 stainless steel tubes clad with 3 millimetre thick 316 sheet, formed into a tapered cylindrical section with a No. 4 finish.

The underground pump house receives fresh air through spiral, welded ducting consisting of 250 millimetre diameter grade 316 stainless steel. A nearby wooden viewing pier has 316 handrails on galvanised steel uprights.

THE TORCH
Perhaps the most evocative symbol of the Games is the Olympic Torch, which carries the flame from Olympia in Greece to Stadium Australia, via the Olympic Torch Relay.

he design of the approximately 1 kilogram, 72 centimetre tall torch includes three layers representing earth, fire and water. The inner layer is polished stainless steel, the middle layer anodized aluminium and the outer layer specially coated aluminium.

Thin grade 316 stainless steel strip was used to form a skin inside the grade 430 stainless steel tube inner layer, acting as a shield against heat, wind and rain. Also, very fine (25 micron opening) 316 stainless steel gauze was installed as a final filter to clean the liquid propane/butane gas mixture that fuels the torch, thereby preventing contaminants from extinguishing the flame.

The torch was fabricated by Sydney firm GA & L Harrington, who produced over 14,000 torches available for purchase by the 10,000 runners participating in the Torch Relay.

This article featured in Australian Stainless magazine - Issue 16, August 2000.

Stainless Welcome for Sports Fans

Sports fans trekking to Melbourne's Colonial Stadium will enter the ground via a 200 metre long, 20 metre wide bridge shrouded in stainless. 

The Bourke Street Pedestrian Bridge, which connects Spencer Street Station to the eastern entrance of the $460 million sporting arena, opened in March 2000, makes extensive use of stainless steel to stunning effect.

A 200 metre long canopy comprising 14 rolled cascading stainless steel sheets divided in sections by red coated curved steel antlers protects pedestrians queuing on the south side of the bridge. The antlers, made from carbon steel, provide lighting and primary support to the stainless steel canopy.

400 metres of stainless steel handrailing with balustrades run the length of each side of the bridge.

he bridge connects the Gateway to the east and adjacent Spencer Street Station and extends across the station to the West End Connection above North-South Road.

Pedestrians entering the 30 000 person capacity bridge on the station side are greeted by two red glass towers, large staircases and a crushed wall of stainless steel through which a ramp connects disabled access from street level to the bridge.

Wood Marsh, the firm commissioned to design the bridge, said stainless steel was chosen because of its appearance, low maintenance and longevity.

"With thousands of people expected to cross the bridge every time an event is on, we needed a material that would not only withstand this level of traffic, but would make an eye-catching entrance to the stadium."

"Stainless steel was the obvious material choice -it is durable, needs limited upkeep and achieved the look we were after."

The roof cladding consists of 20 tonnes of 1.6mm grade 316 stainless steel sheets rolled to a radius of approximately 325mm butt joined, with a No. 4 finish to both faces.

400 metres of 6 inch, Sched 40 grade 316 stainless steel pipe was used for the handrails, polished to a No. 4 finish.

The handrails were constructed at Shearform Industries' workshop and installed, invisibly fixed, on site. The roof cladding was fabricated and polished in the workshop and installed on site.

The roofing material was supplied by ASSDA member Atlas Steels (Australia) Pty Ltd, the handrails by ASSDA member Sandvik Australia.

This article featured in Australian Stainless magazine - Issue 17, January 2001.

Stainless Export Defies Elements

Sixty tonnes of stainless steel has been exported to Hong Kong as part of an innovative Australian-designed and manufactured kit form, large span skylight project worth three quarters of a million dollars. 

The 42 gable trussed skylights and sub-frames in varying sizes up to four metres wide and eight metres long were installed in a $90 million dollar treatment plant commissioned by the Hong Kong Government.

Grade 316 stainless steel was used for the skylight's precision pre-cut sub-frame members, welded maintenance ladders, lntalok mechanism assemblies, special profiles, on sight assembly jigs, pivots and fixings.

The project specified that the skylights be easily removed from the roof to allow crane access to equipment in the building. However, the skylights also had to be strong enough to withstand Hong Kong's coastal gale force winds. Sky Roof International (Victoria) undertook the project.

Sky Roof Director, lan Howe, said the specifier's requirements and environmental concerns were met by adapting stainless steel to the company's lntalok cyclonic glazing frame system.

"The government specified that they wanted something striking, low maintenance and durable," Mr Howe said.

"As the frames had to be robust for lifting and withstand the conditions inherent in a coastal region, the obvious choice was stainless steel."

The skylight was designed to use wind uplift force to operate the lntalok hold down mechanism.

When the aluminium skylight structure is forced skyward by wind suction on the glazing, the small surface area of the stainless steel sub-frame is unaffected. This creates a differential force between the skylight and the sub-frame which is transmitted to the lntalok mechanism via the stainless steel ladders. The stronger the wind uplift on the skylight, the tighter the stainless steel lntalok engages the building.

All the prefabricated stainless steel components for the skylights were produced in a zircon glass bead blasted finish by ASSDA member Hart to Hart Fabrications (Dandenong, Victoria).

The skylights were then shipped to Hong Kong in fully fabricated kit form for easy on site assembly.

Mr Howe said ASSDA's Australian Stainless Reference Manual was vital in providing stainless steel technical and supply information.

"I found the Reference Manual and other pieces of information very useful in learning more about stainless steel and also in helping me find a fabricator for the job - Hart to Hart Fabrications," he said.

Following the success of the Hong Kong project, Sky Roof International is working on a design for a skylight featuring stainless steel glazing frames.

This article featured in Australian Stainless magazine - Issue 17, January 2001.

Tourists Supported by Stainless

Stainless steel spiral handrails provide a stunning support for climbers of Perth's new Bell Tower complex.

Grade 316 stainless steel tube was used to construct handrails for an internal spiral staircase and for an observation platform on the building's sixth floor.

170 metres of tube was used for the staircase, which was spiralled and fixed to the mild steel structure of the building. Washers and neoprene gaskets were used to separate the stainless steel from the mild steel, avoiding corrosion issues caused by dissimilar metal contact.

The handrails were fabricated by Tubelok Metals Australia in their Cannington (Western Australia) workshop and brought into the Bell Tower in six metre lengths.

Handrails on the sixth floor observation platform were secured to the structure with patch fittings through toughened glass, with 40 metres of stainless steel pipe used in total.

All handrail for the project was polished to a AWBP finish (as welded buff polished)_ Stainless steel for the project was supplied by ASSDA member Austral Wright Metals.

This article featured in Australian Stainless magazine - Issue 18, May 2001.

Stainless at Sea World

Sea World's latest attractions, polar bear cubs Lia and Lutik, have captured the public's attention since their arrival from Russia late last year. The one-year-old siblings join resident polar bears Kanook and Ping Ping, who have already given the park one of its most successful years since Polar Bear Shores was built in 2000.

The use of stainless steel in the construction of the polar bear enclosure contributes to giving park visitors a close look at the playful cubs and the adult bears. Large underwater viewing windows, supported by stainless steel frames, allow the public to watch the bears swimming and diving in a four-metre deep pool.

The health and well-being of the bears is a prime consideration in the design of their custom-built enclosure, which Sea World says "leads the world in providing a naturalistic and stimulating environment utilising the latest in polar bear technology, drawing on international research and knowledge."

The exhibit features natural landscaping, chilled water pools, shade cover, water misters and streams, wind generators and diving and climbing opportunities. Stainless steel plays a significant part. The larger bears are powerful animals, and strong stainless steel doors onto the exhibit ensure their security as well as the keepers'. The four air-conditioned den areas are made of grade 316 stainless, selected to withstand the corrosive effect of bear urine and daily hosing out.

Introducing the bears to one another had to be carefully managed. A specially designed stainless steel mesh screen known as the "howdy window" separated the older bears during the quarantine period, while allowing them to see and smell each other. Kanook, who was 16 when she was brought to the Gold Coast from Arizona, has taken the dominant role while Ping Ping, a young curious five-year-old when he arrived from China, is more submissive. The screen was a success with the two now getting along well together. The same method is being used to familiarise the bears and the new cubs without any risk to Lia and Lutik.

Bringing the polar bears to Australia was the culmination of three years of research and planning. Sea World says there has been overwhelming interest and support from the public which in turn can only assist conservation efforts for the polar bear.

This article featured in Australian Stainless magazine - Issue 20, February 2002.

Architectural Stainless

World Class and Australian Made

The Australian stainless steel industry is committed to providing high quality, durable products for the architecture industry.

Vee-cut technology is an example of precision fabrication catering to the demands of architects and designers.

Following the importation of a Japanese vee-cutting machine, Australian manufacturers now offer extremely accurate sheet metal folding, resulting in excellent optical features.

The Amada machine operated by Vee-Cut Australia in Sydney produces tight radius curves with precision, while hardly altering the surface tension of the stainless sheet. This produces minimal distortion even with the use of mirror finishes. The machine is capable of handling heavy gauge (up to 6mm) material allowing the manufacture of very strong architectural elements with the precision and high polish associated with light-weight constructions.

GUCCI STORES
Vee-cut technology is typically used for architectural features where clean, sharp lines and a high level of finish are desired, such as shop and hotel fittings and joinery items. The machine has been utilised in the manufacture of stainless steel shop fittings for fashion house Gucci, with the Sydney store the latest in a series which includes Saipan in the Pacific, Auckland and the Gold Coast.

Each fit-out includes illuminated stainless steel and glass showcases made to Gucci's worldwide store design (pictured), and miscellaneous stainless fittings such as shelving, belt straps and lettering totalling around $100 000 per store. About a dozen cabinets have been built for each store using grade 304, 2mm gauge material polished to no.8 mirror finish.

This article featured in Australian Stainless magazine - Issue 20, February 2002.

Style + Strength

The superior strength of stainless steel has long made it the material of choice for prison toilet facilities. Innovative styling has now opened up a new market in public restrooms. Increasingly, venues are turning to stainless steel to make their facilities safer and reduce costs in the long term. 

Vandalism in public facilities is a widespread occurrence, with some pub and club owners forced to replace a toilet every few weeks. While the initial outlay may be higher for stainless fittings, the cost of replacing and installing a ceramic pan can be recouped after just one instance of vandalism. Unbreakable stainless steel also eliminates the risk of injury from sharp ceramic shards and the inconvenience of effluent overflow.

Stylish designs mean that aesthetics aren't sacrificed for practicality. Martin O’Brien, General Manager of the recently refurbished QA Hotel in Brisbane’s Teneriffe, says stainless steel was the logical choice because it’s "tough as teeth, durable and looks good. Stainless steel was the best way to go - its clean lines never go out of date." As part of a total makeover, the QA replaced ceramic tiles and fittings with stainless steel. O’Brien says vandalism in pubs is a big issue, with "punters" taking out their frustrations in the bathrooms and causing a lot of damage to conventional fittings.

ELEGANT AND FUNCTIONAL
Metal, timber and black are the predominant themes in the $3 million refurbishment of the 120-year-old Regatta Hotel, overlooking the Brisbane River. Conceived by owner-developer Steve Hammond, the renovation juxtaposes high tech and rustic, with gleaming metal and glass surfaces set against timber frames and sandblasted brick walls. The metallic theme continues outside with stainless steel topped café tables on the pavement and verandahs, and aluminium louvres replacing traditional lattice.

Stainless steel is integral to the washroom design, combining clean, minimalist lines with durability, vandal-resistance and minimum maintenance. Push pad controls replace vulnerable taps, while moulded stainless steel pans with in-wall slimline cisterns and push pad flush eliminate other targets for vandals. Stainless steel is used for mirrors, air-towels, soap and toilet paper dispensers.

Stainless steel fabricator Stoddart, who drew on the resources of ASSDA to develop a commercial product range, says their pans are often specified as part of a suite to fit in with a high-tech, architectural look. This project used Stoddart's standard shrouded toilet made from satin finished, 316 stainless to withstand heavy duty cleaning products. A pin inside the bowl prevents objects like wine glasses being flushed into the plumbing. The flat plate design of the rim flush makes the toilet contraband-proof and the unit has the advantage of being able to be fixed onto a wall from the inside.

Stainless steel features heavily elsewhere in the bar frames and counters and in a microbrewery. Three 2 000 litre stainless steel tanks with decorative copper cladding have been incorporated into the design of the downstairs bar. The beer is piped to fermentation tanks in the upstairs bar, which form a backdrop to the dancefloor. Apart from providing a theming enhancement to a predominantly beer pub, the installation of a microbrewery was a commercial decision in response to a growing demand for boutique and specialty beers, says project manager Rob Forbes.

BEACHFRONTS AND PARKS
Local authorities present another significant market for stainless steel amenities. Gold Coast City Council, which for some years has had a policy of replacing vandalised ceramic toilets with stainless steel ones, is now installing stainless steel pans in all new public convenience blocks. To improve safety, the Council is also considering installing stainless steel woven security mesh near the entrance of public toilets. The one-way screen allows people to see if is there is a threat outside the building before exiting.

STYLISH STAINLESS SHOWERS
In conjunction with Stoddart, Gold Coast City Council is developing a prototype stainless steel shower to eliminate the corrosion problems of beachside installation. Ian Munro, Supervisor in the Council’s Building & Maintenance section, says the project has attracted interest from other councils on the coast. Seven showers are currently being tested. ASSDA member Stoddart has also manufactured stainless steel street furniture for Casuarina Beach on the Tweed Coast in northern NSW including beach-themed showers in 316 stainless. These are designed to be vandal and weather resistant and feature automatic water cut-off to prevent wastage.

Image on left: Casuarina Beach 316 stainless surfboard shower. Design by Hutton-Harris. Fabrication by Stoddart.

This article featured in Australian Stainless magazine - Issue 20, February 2002.

New Technology for Design Excellence

The overwhelming response from the architecture community to our earlier article on precision folding of stainless steel sheet using vee-cutting technology has prompted a more in-depth look at the process. 

Thanks to vee-cut technology, stainless steel sheet can be formed into angles as precise as those obtained by extrusion. This technology is now being carried out in Sydney, allowing the local manufacture of a whole range of stainless steel architectural products. The technique is particularly suited to elements such as door fronts, window frames, shopfronts, showcases, elevator doors as well as all forms of cladding.

In a completely new method of manufacture, vee-cutting can also be used to make flat products such as tread plates for lifts and escalators by removing strips of material to the required width and depth.

CLEAN LINES COMPLEMENT SPECIAL FINISHES
Ordinary bends made on a brake press typically produce a corner radius twice the thickness of the sheet, resulting in a finished product with soft, blurred lines. But with the introduction to Australia of vee-cut technology, it is now possible to produce stainless steel with corners as precise as an extruded angle, such as those found on aluminium window frames.

The method is particularly useful when working with textured and patterned stainless sheet. Such finishes are distorted by the traditional bending method. Using the vee-cut machine, the feature finish is preserved without loss of quality. This makes it the manufacturing method of choice for items such as bar fronts, display cases, door furnishings and a myriad of other uses where appearance counts.

THE VEE-CUTTING PROCESS
The machine cuts a continuous vee-shaped notch in the sheet using a series of five tools, which make repeated passes across the surface. The number of passes required varies depending on the thickness of the metal; generally three or four are needed, but up to 15 can be required for thicker product.

The machine can handle thicknesses in the range of 0.6mm to 6.0mm and is capable of cutting to a minimum depth of 0.4mm and processing sheet up to 4m in length. The sheet is then folded along the groove in a brake press. The depth of the groove can be set for acute angles down to 15°.

When used for cladding, up to 70% of the thickness of the sheet can be removed; however, care needs to be taken not to weaken structural components by removing too much of the thickness. One option is to remove material to obtain a tight corner and then stitch weld to restore strength – it is a matter of weighing up cost and other considerations.

A TYPICAL APPLICATION - ENTRANCE DOORS
An example of the finish available can be seen in the revolving doors of the McKell Building in Sydney (pictured). Byrnes Entrance Technology Pty Ltd (BET) worked with ASSDA member the Townsend Group to produce profiles and folded panel sections to clad the central steel and aluminium core of the triple door. The final effect is the appearance of a solid, triangular-shaped central column with lightly inward-curving sides.

This article featured in Australian Stainless magazine - Issue 22, September 2002.

Sheer Delight

Stainless Steel Mesh

Woven metal fabrics are a popular architectural product in Europe, where stainless steel mesh is used for a high-level finish in many internal and external settings, such as wall and ceiling panelling, space dividers, external cladding and facades.

Now Sydney firm Interspace Manufacturing Pty Ltd is making and installing woven stainless steel wire mesh screens using metal fabrics from iO Metal Fabrics Pty Ltd, a German firm with an Australian presence and a member of ASSDA.

ASSDA member Interspace has been designing and manufacturing store fittings and custom fixtures for displays and exhibitions since 1970. The firm began utilising stainless steel mesh two years ago and has produced partitions for a number of interiors, including the AMP Building in Sydney and the office of medical supply firm B. Braun, designed by Leffler Simes Architects. Another project is Space 207 in St Leonards, Sydney, which is being billed as "the North Shore's finest office building, so advanced it is destined to lead the way in business premises for a long time to come." The designers of Space 207 set out to create an environment representing "style, sophistication and elegance" and chose stainless steel mesh to complement the building's hi-tech, ultra-modern decor.

Woven stainless steel fabrics are versatile and reliable. Made from corrosion-resistant grade 316 stainless, they are equally at home in hostile external locations requiring stainless steel's hard-wearing capability and in internal spaces where aesthetic values come to the fore. They can be put to a variety of uses, including partitions, wall and ceiling cladding, awnings and sunscreens. In Germany they are also employed in roadside noise reduction barriers.

Stainless mesh is lightweight but strong and it is extremely resilient when subjected to environmental threats such as heavy weather, fire and chemicals.

Like textiles generally, metal fabrics are woven on a loom, producing an attractive array of patterns and textures in a varying degrees of weight and flexibility.

This article featured in Australian Stainless magazine - Issue 23, December 2002.

Stainless preserves Tasmania's heritage

Hastings Caves, one of Tasmania’s major tourist attractions situated a scenic two hours’ drive south of Hobart, has received a major upgrade.

According to the Site Co-ordinator Keith Vanderstaay, the caves "have been reinvented with the completion of a state of the art, computer-controlled lighting system which will change the way everybody will see the cave."

New stainless steel handrails allow visitors to navigate the cave in safety, and are designed to last for generations, minimising the need for maintenance in the caves' sensitive environment.

Tasmania’s Parks and Wildlife Service, as part of a safety review of structures used by the public, identifed the 1930s galvanised pipe handrails as substandard to the new AS2156.2 Walking Track: Infrastructure Design and decided to replace them.

Another primary concern was the environmental damage being caused by the breakdown of the galvanise.

The Service looked at using stainless steel or aluminium for the project and after all considerations, including cost, the decision was made to use grade 304 stainless for the posts and rails.

The job consisted of 263m of rail along around 90m of walkways, stairs, ramps and viewing platforms which snake through the cave.

Sinclair Knight Merz was engaged to design, seek tenders and supervise construction. The project presented some unusual and physically demanding challenges for the fabricator, Prins
Metalwork of Kingston.

COLD, DARK WORK

Adrian Prins and his firm worked on the project for two and half months, with a team of four or five people living at the caves for half that period.

All of the installation work, which was carried out in winter, had to take place at night so that the caves could stay open to visitors during the day. For the same reason, no voids were allowed to remain at the end of each session. The workers had to carry out all the old carbon steel balustrades by hand, just as they had to carry in all the new rails and their equipment, down 200+ steps into the cave.

Once inside they had to be very careful not to touch any of the formations, which are extremely fragile.

Because no angle grinding was allowed inside the cave for environmental reasons, they used a reciprocating saw to remove some 190 old posts.

The stubs were capped and the new posts installed. MIG welding was allowed, but kept to a minimum. There was only 240V, 10 amp power supply throughout the cave.

Where possible, fabrication took place at the workshop and was fine-tuned on site. The nature of the project meant that there were many adjustments to be made as few of the
balustrades have consistent angles. The concrete steps and landings, which were boxed in situ to adapt to the contours for the caves’ public opening in 1939, are quite irregular.

Sitework was carried out at the cave entrance, under artificial lights, in an area 400m from the carpark. It took the workers six trips along a boardwalk every night just to set up equipment
and they then had to carry materials and equipment up to 400m from the cave entrance.

While those who worked on the project recall the cold and the dark conditions, visitors can now safely enjoy the beauty of the cave in the knowledge that the new stainless steel infrastructure is protecting the caves and its visitors.

This article featured in Australian Stainless magazine - Issue 21, June 2002.

Large tube now made in Australia

The Australian construction and food processing sectors can specify stainless steel tube in large sizes with confidence in its quality and timely delivery, now that local production has commenced at a Victorian plant.

Manufacturing by an Australian firm will also make it easier for specificiers to communicate their special requirements.

Stainless Tube Mills' special purpose factory in Melbourne’s outer east is producing longitudinally welded tube in diameters up to 300mm and wall thicknesses up to 8mm – the largest seamwelded stainless steel tube available in Australia. Tube in this size range has always been imported.

The recently commissioned draw mill, designed in house by ASSDA member STM in conjunction with CSIRO, joins twelve other mills on site which produce welded tube up to 101.6mm outside diameter.

While a conventional mill uses a drive mechanism to feed the strip through the mill and produce welded tube, in the draw mill strip (1) is drawn through the mill with the forming rolls idling (2 & 3). This has the effect of producing a tube with minimal roll forming marks, as well as precise tolerances. The internal weld bead (4) is rolled to merge with the parent metal producing a smooth bore. Externally, the polished finish renders the seam all but invisible.

The smooth interior finish means tube produced on the draw mill is ideal for transfer of processing fluids, particularly food products, where the clean internal bore is mandatory.

Large diameter tube is also finding application architecturally for balustrades, barriers and structural column formers. As formers they make an attractive alternative to brick or concrete,
delivering a superlative appearance and impressive structural strength, which can be further bolstered by filling with concrete. STM used 300mm columns in T304 alloy to dramatically enhance its own office façade (left).

The draw mill has only been in operation commercially for a short time, however STM reports there has already been considerable demand. The firm's future plans include production of heavy walled large diameter sectional tubes for architectural applications.

This article featured in Australian Stainless Issue 21 - June 2002.

Stainless across a cultural spectrum

Melbourne's public life is populated with unique, strong and take-as-you-find personalities. Its culture – from high to mass – is influenced by figures like Jeff Kennett and Sam Newman, who shape Melbourne's view of itself and its environment.

While the former Premier's impact on the Victorian capital has been comprehensive, the refurbishment of Brighton Sea Baths as an upscale nightspot part-owned by Mr Newman has contributed a smaller scale landmark which is just as likely to provide visitors (male ones, anyway) with a memorable impression of the city.

The retired Geelong player and AFL Footy Show co-host, well-known in Melbourne for his flamboyant lifestyle, including a 5m high mural of pop icon Pamela Anderson at his Brighton home, came up with a quirky idea for the urinal: a built-in wide-screen TV (main image).

ASSDA member Britex, working with Buxton Constructions' Adrian Seymour and architects McGauran Soon Pty Ltd, were able to deliver the goods thanks to the versatility of stainless steel.

Melbourne's CBD has undergone a transformation in recent years, and everywhere stainless steel is playing a significant role. It’s proving its durability and appeal in major public facilities, such as Colonial Stadium (urinals) and Vodafone Arena (food preparation areas), both venues which showcase the city’s top sports events and attract many international visitors. The facilities must perform under the pressure of large crowds and yet look good.

Stainless steel fulfills these requirements here as it does at the Melbourne Convention Centre. The Centre, one of the country’s premier sites for international events, makes the most of its riverside location, with floor to ceiling windows framing views of the Yarra and one of Melbourne's best-known attractions, the Polly Woodside. Stainless steel benches in the foyer are in keeping with the clean lines and open spaces (see image, right).

Stainless works equally well in boutique refurbishments, such as Brighton Sea Baths and Retreat on Spring, an upmarket health resort tucked away near Melbourne’s gracious old Parliament buildings. The design language of Retreat on Spring is quiet, peaceful, harmonious.

Blond, polished floorboards, bamboo and stone set a tranquil tone. Stainless steel slips easily into this combination of natural elements and muted colours, while providing a practical surface in the health bar area and for the vanities in the individual therapy rooms.

From the intimate setting of Retreat on Spring to the high-traffic amenities at the city’s massive sports arenas, stainless steel is perfectly at home, providing both understated elegance and rugged performance.

This article featured in Australian Stainless Issue 21 - June 2002.