Logo


Keep it clean

When working with stainless steel assets, a lot of attention is put into getting the ‘pre-install’ aspects right. Design, specification, fabrication, and commissioning are all equally important, but how the stainless steel in these assets is cared for and maintained is just as critical for optimum life and performance. 

ASSDA Member Kleanwell specialises in asset management through the provision of cleaning and maintenance programs. Their work focuses on products where stainless steel is predominant - lift and elevator cladding, facades, awnings, and ducts among many others. 

Jessica Wehbe, Director of Strategic Relationships at Kleanwell, says there is a clear gap in awareness and communication between the pre- and post-installation stages, where contractors “do not know how to maintain their assets and the client at the end of the day is left scratching their head”. Jessica strongly believes there is a need for “clear communication between all parties that are involved from the design, manufacturing and installation, and maintenance teams” at the very early stages. This presents opportunities to set strong specifications (properly aligned to desired maintenance budgets and plans), and expectations around future material performance. 

The well-worn phrase “stainless steel is low maintenance, not NO maintenance” should be embedded as early as possible.  

A recent project Kleanwell completed at Sydney Olympic Park involved major restoration works to 21 lift landing doors with 15 years of poor maintenance. The before and after images show a dramatic improvement, however, pit-like artefacts remain. A basic cleaning regime implemented post-commissioning would likely have resulted in better aesthetics and lower cost than the recent history shows.

According to ASSDA Technical Specialist Dr Graham Sussex, some useful things to remember are:

  • If an adjacent window needs cleaning, clean the stainless steel as well.
  • Regular planned washing preserves the stainless lustre.
  • Never use abrasives or bleach when cleaning stainless.

          

This article is featured in Australian Stainless Magazine Issue 76 (2022).

Raising the standard with stainless steel

Water quality plays a crucial role in the decontamination and reprocessing of reusable medical devices, and stainless steel has helped facilitate the standard required for their sterilisation. 

The release of AS/NZS 4187:2014 Reprocessing of reusable medical devices in health service organisations requires hospitals across Australia to comply with a range of stringent new requirements consistent with European and global standards for sterilisation processes. Its aim is to ensure reusable medical devices are adequately cleaned, disinfected and sterilised to protect patients and prevent infection.

Water quality is critical for sterile processing, and one requirement of the revised standard includes the replacement of non-compliant cleaning, disinfecting and sterilising equipment. There are minimum water quality requirements for pre-cleaning, cleaning and the rinse(s) prior to final rinsing. These include water hardness no greater than 150 mg/L and chloride no greater than 120 mg/L. AS/NZS 4187:2014 also specifies water quality requirements for the final rinse stages of sterile processing across Tables 7.2, 7.3 and 7.4, including final rinse water for manual cleaning and washer-disinfectors, and feed water for a dedicated steam generator.

Despite the Australian water quality guidelines, water supplies are variable in chemical impurities and the microbiological purity may also be a challenge. Therefore, water used for the final rinse of the disinfection process and the generation of steam for sterilisation must undergo treatment to achieve the water quality requirements. Reverse osmosis technology delivers a solution to meet the physical, chemical and microbial water quality required for the final rinse.

Reverse osmosis (RO) is a water treatment process that uses a semi-permeable membrane and applied pressure as the final step to filter out ions, unwanted molecules and large particles. The process is effective for the removal of micro-organisms and both organic and inorganic chemical components. ASSDA Member and Accredited Fabricator J&T Mechanical Installation have delivered stainless steel bioprocessing equipment for over 25 hospitals across Queensland, New South Wales and Victoria to meet the new specification and requirements of AS/NZS 4187:2014. The ongoing work includes the fabrication and installation of new equipment and replacement of non-compliant ring mains, water distribution networks and RO water treatment systems.

The RO water treatment systems must accommodate the required regular thermal disinfection to mitigate bacterial endotoxins and deliver a high level of microbial water quality. The treated water is reticulated to central sterile services departments (CSSDs) where surgical instruments and other reusable medical devices are sterilised. Continuous bacteria control is critical to supplying the required microbial water quality and the use of ultraviolet (UV) light in the ring mains to treat return water delivers compliance with AS/NZS 4187:2014. UV sterilisation is 99.99% effective in killing microbiological substances, and  is a safe, chemical-free process.

Stainless steel is the standard material of construction in water treatment applications, offering hygienic properties, durability, and optimum long-term performance. With excellent corrosion resistance and hydraulic conductivity characteristics, stainless steel is the first-choice material for best overall water system design.  

In addition, plastic materials are not viable in high water purity applications due to potential leaching, and copper may also be an issue because of cupro-solvency in soft water. 

Grade 316 stainless steel material has been specified for works as per the standard, including the use of 51mm tube, 20mm three-piece ball valves,  and 45o and 90o bends as specified in AS 1528 and supplied by ASSDA Member Atlas Steels.

J&T Mechanical Installation’s expertise has ensured the highest quality of work continues to be delivered to meet the current and future requirements of water supply systems complying with AS/NZS 4187:2014. Orbital welding is used on site during installation, with bioprocessing equipment requiring high quality welds to ensure water supply remains free of bacteria, rust and other contaminants. Orbital welding ensures full penetration welds with no overheating occurring that could undermine the corrosion resistance of the final weld zone.

The J&T team also performs hydrostatic testing and weld traceability to confirm mechanical integrity, as part of AS/NZS 4187:2014’s requirement for all equipment to undergo installation qualification (IQ), operational qualification (OQ) and performance qualification (PQ) tests.

As the roll out of AS/NZS 4187:2014 continues across Australia, hospitals and other health organisations are required to have a documented plan for implementation in place by December 2021, with the deadline for full compliance by December 2022.  Critical hospital infrastructure demands long-term compliance, structural integrity and quality fabrication, all of which are being delivered using stainless steel and superior workmanship by J&T Mechanical Installation.

  

Photo credits: J & T Mechanical Installation

This article is featured in Australian Stainless Magazine issue 73, 2021. 

Rheem Australia’s Sturdy Stainless Steel Range

Stainless steel hot water heaters offer superior design combining high thermal efficiency, corrosion resistance, durability and performance for domestic applications.

ASSDA Member Rheem Australia has been committed to delivering hot water systems for over 80 years, with its first gas water heater manufactured in 1939 in Waterloo, Sydney. Through new product development and innovation, Rheem Australia has pioneered the commercial production of Australian-made hot water systems, designed and built for Australian conditions.

Operations Manager at Rheem, Gavan Schaeche, says, “Rheem Moorabbin is leading the way with its very own Stainless Steel and Commercial Centre of Excellence. The centre performs 125km of stainless steel welds a year to keep up with the demand of the new range which has quickly become an industry favourite.”

Rheem Australia’s stainless steel hot water system range includes gas and electric storage ranging in capacities from 50L to 315L. Manufactured from a range of stainless steel grades, the hot water systems use mains pressure water delivery and do not require a sacrificial anode for corrosion protection, reducing long-term maintenance and service costs over the life of the water heater.

The electric stainless steel models in the hot water system range offer high energy efficiency, exceeding Minimum Performance Standards (MEPS) by 12-24%. In addition, stainless steel cylinders weigh significantly less than comparable vitreous enamel models, making the product easier to manoeuvre and install. It is particularly well-suited for households that have their water heater installed indoors or in elevated multi-storey locations. 

Victorian-based Plumber and Founder of The Tap Man, Chris Arms, has been providing household solutions for thirty years. Delivering reliable household appliances is paramount to maintaining a highly satisfied client base, and when Chris receives a request to replace a hot water system, he always recommends the most suitable product from the Rheem stainless steel range. 

“I like to bring my customers along on the journey to find the right solution for their home through education about what they can expect from the products and materials I’m installing.

While the stainless steel range comes at a higher price point, it’s absolutely worth the investment. In my experience, stainless steel is a robust material that’s durable, corrosion resistant and less likely to incur a leak,” Chris says.

“It’s also one of the only hot water systems where I often do a repair over a replacement, should there be an issue such as an element assembly requiring replacement. The stainless steel tank makes a repair worthwhile.”

Stainless steel can present a higher upfront cost when comparing various hot water system products, however its investment is surpassed by the material’s performance and lifespan, and cost savings in energy efficiency, service and maintenance costs.

 

This article is featured in Australian Stainless Magazine issue 69, 2020.

 

Stainless steel makes an entrance

A collaboration between ASSDA Members using 'gold' stainless steel has delivered the epitome of opulent luxury at The Star Sydney.

The Star Sydney's multi-million-dollar transformation has seen its Pyrmont Street entrance revolutionise the guest arrival experience, with a porte-cochère facing the glittering Darling Harbour and a refurbished Grand Foyer combining innovative architecture, contemporary art and technology.

Over 4000m2 of grade 316 stainless steel with a gold finish is featured throughout the Grand Foyer and porte-cochère, enriching the luxurious look and feel of the integrated resort. ASSDA Member Steel Color Australia supplied 1mm and 1.2mm thick stainless steel sheet in various lengths from 2400mm to 3500mm and widths of 1219mm to 1500mm as the sole distributor in Australia and New Zealand for embossed, coloured, mirror finished and textured stainless steel manufactured by Steel Color S.p.a in Italy.

The stainless steel's gold colour was achieved with a titanium film using a Physical Vapour Deposition (PVD) coating process. The environmentally-friendly method vapourises titanium in a vacuum chamber to form an extremely thin layer that bonds to the steel's surface. The process also improves the performance of the steel, increasing durability and resistance to heat, light, abrasion, scratches and corrosion.

In addition, the steel's surface features an anti-fingerprint (AFP) coating preventing oil and finger marks, contributing to a sleek aesthetic finish with minimal maintenance. The AFP coating provides the titanium coating with a timer colour finish, strengthening colour stability and extending the service life of the application.

Suitable for internal and external applications, coloured stainless steel can be used in many design forms and was specified for the bespoke luxurious features in The Star Sydney's Foyer and porte-cochère.

The Steel Color Australia supplied stainless steel sheeting was installed in the Grand Foyer and internal porte-cochère by ASSDA Member Karisma Joinery, across the door portals, elevator door jambs and ceiling panels, columns and wall panels. A V-Groove machine was used to form precise, sharp angles and folds, creating architectural profiles to achieve a seamless upmarket finish and meet the high-end specification.

The stainless steel clad elements for the external porte-cochère, including luxury retailer finishes for Gucci, was fabricated and installed by ASSDA Member Fabmetal Specialists. All profiles and clad elements were fabricated in their workshop in Melbourne, using an in-house V-Groove machine to achieve a crisp bend profile, prior to installation on-site by the Fabmetal team. A split batten system was used to clad the stainless steel elements across the retail facade fixtures, window mullions, headers and kickers. The Fabmetal team were also tasked to clad the revolving doors and overcame challenges with complex curved works, laminating gold stainless steel on to curved fabricated T-sections in power-coated aluminium to create a striking two-tone effect.

In a nod to architectural innovation, The Star Sydney will continue to welcome and awe its guests with its everlasting stainless steel gleam and elegance.

  

 

PHOTO CREDIT: MURRAY FREDERICKS PHOTOGRAPHY. 

This article is featured in Australian Stainless Magazine issue 68, 2020.

 

Stainless steel behind high-tech visual art

Australian designed and manufactured stainless steel wedge wire grating has been instrumental in delivering 'Aquatique', the first sculptural water installation of its design in the Southern Hemisphere.

The Star Sydney's Grand Foyer has been transformed as part of an $850 million redevelopment for the integrated resort. A unique immersive visual experience is now welcoming guests in a masterfully choreographed interplay of light, water, digital art and live performance.

The key elements of the installation include an 8K resolution, 25m wide crescent-shaped digital screen, laser light shows and 'Aquatique', a cascading sculptural water feature spanning 8m with a 2m diameter centre stage.

Central to the design and function of the sculptural water feature is the use of Australian designed and manufactured stainless steel wedge wire by ASSDA Member and Accredited Fabricator Paige Stainless.

PAIGE STAINLESS HEELGUARD® is at the cutting edge of water drainage technology, offering continuous drainage through its 5mm aperture and high-water volume intake and removal efficiency. The water feature was designed with a throughput capacity of 30,000L, with water being pumped up to 15m vertically to the water feature jets, recirculated through the PAIGE STAINLESS HEELGUARD® and reused whilst the water feature is in operation. The key was to minimise water splash during the process with PAIGE STAINLESS HEELGUARD® delivering the brief with its unique wedge design. In addition, stainless steel is an excellent material choice for water drainage technology, offering durability, aesthetics and ease-of-cleaning during maintenance inspections.

Paige Stainless' project scope also included the design, fabrication and installation of the water collection tank, substructure for the grating and centre stage area within the water feature. Over 3.5 tonnes of grade 316 stainless steel was supplied for the project by ASSDA Members Austral Wright Metals and Midway Metals, including 4mm thick plate and rectangular hollow sections.

The water feature body was manufactured at Paige Stainless' manufacturing facility in Caboolture, Queensland, and fabricated in 14 components for ease of interstate transportation logistics, efficient installation and maintenance.

Delivery and installation logistics were a focal point of the design as The Star Sydney was full operational and open to the public during installation. Provisions were made for specific delivery times and material management to make for a successful, non-disruptive transition from truck to site. Careful planning and design resulted in minimal on-site welding and passivation treatment using citric acid by the Paige Stainless installation team.

The water feature uses 100% recycled water. Its sculptural display is complemented by a theatrical light show and digital art canvas inspired by Australian artists, cinematographers and animators. As the world's largest permanent multi-sensory art experience, the Grand Foyer at The Star Sydney is a visual feast entertaining an average 30,000 guests per day.

PHOTO CREDIT: MURRAY FREDERICKS PHOTOGRAPHY. 

This article is featured in Australian Stainless Magazine issue 68, 2020.

Immerse yourself in stainless luxury

Setting the benchmark in boutique luxury and innovation using stainless steel is Brisbane’s Emporium Hotel.

Developed by the Anthony John Group, The Emporium Hotel opened in July 2018. Nestled in the premier lifestyle and cultural precinct of South Bank, the 143-suite hotel is turning heads with its exquisite interior design, bespoke handcrafted features and luxurious facilities.

Stainless steel was the material of choice for the five-star hotel and selected for its quality, opulent aesthetic and luxury appeal. Over 5.5 tonnes of grade 304 stainless steel sheet, 1.2mm thick in a No. 8 mirror finish was used throughout the five-star hotel and supplied by ASSDA Member Fagersta Steels

ASSDA Member and Accredited Fabricator, Langford Metal Industries, was engaged to laser cut the mirror finish material to bring the developer’s trademark design to life, which was installed by Thump Architectural.

The frangipani inspired pattern represents the Queensland theme and character, and the laser cut stainless steel prevails throughout the hotel on mullions, sliding doors, external panels, columns, cabana suites surrounding the 23m infinity edge pool – almost anywhere and everywhere, serving both a functional and decorative purpose.

A remarkable feature of the hotel is its rooftop bar on the 21st floor, The Terrace. Presenting panoramic views of South Bank Parklands, the Brisbane River and the city skyline, The Terrace maximises the warm Queensland weather with two retractable roofs offering full, partial or no exposure.

Measuring 7.5m long, 2.1m wide and 50mm thick, the ceiling of the first retractable roof features the impressive frangipani stainless steel design. The sliding panel is a composite structure incorporating insulation and structural members which are clad top and bottom with mirror polished stainless sheet. For structural purposes, the panel was shaped into a shallow moon profile to form the roof’s arch. When retracted, a second roof made of glass is revealed, which is also retractable for a complete outdoor rooftop experience.

The stainless steel ceiling and surrounding elements complement the rooftop bar’s sub-tropical luxe vibe with ceiling-to-floor glass doors, lush greenery, and white backlit onyx floor tiles and bar.

 

Photo Credit: Emporium Hotel

Coastal living

Stainless Steel Pool Fencing

Safety is the number one consideration when building a pool fence, and stainless steel delivers in compliance and material strength while fulfilling design and aesthetic needs.

A stunning canal-front home on the Gold Coast features a streamlined stainless steel vertical balustrade system as supplied by ASSDA Member Miami Stainless.

The custom-designed stainless steel pool fence features 50mm square mirror-polished posts and upper and lower rails. Complying with Queensland pool fencing and safety barrier regulations, the vertical stainless steel wire balustrades were spaced 80mm apart and installed using Miami Stainless’ Nutsert Swage Stud System on the base with a ProRig Flip Toggle into the handrail.

Grade 316 stainless steel was specified for its aesthetic appeal, material strength and corrosion resistance, particularly with the home’s waterfront location and close proximity to the coastline.

In addition, stainless steel is a durable and long-lasting alternative to aluminium balustrades and offers reduced household maintenance when compared with glass. Glass fencing often requires frequent cleaning to remove chlorine or saltwater splashes and finger marks. 

The stainless steel pool fence ticks all the boxes in combining safety, unobstructed views, durability, minimal maintenance and luxury style.

 

Photo credit: Miami Stainless

 

Stainless Steel and Fire Resistance

What is the fire rating of stainless steel? This is a common enquiry from ASSDA Members and the construction industry, especially with the current concerns about flammable cladding. The three major branches to this question are covered in this article.

Will stainless steel burn, and if it does, will it give off fumes or facilitate the spread of fire?  

This question is readily answered because stainless steels are steels. It is recognised that steels do not burn and only start to melt at about 1400oC. This means that stainless steels do not have a “fire rating” as such, so the tests of AS/NZS 1530.3 (or the equivalent tests in BS 476) are not required.

Heating in a fire will obviously have an appearance effect because, unlike the transparent nanometer-thick passive layer formed in moist air, stainless steels heated above about 300oC in air discolour as they grow a less dense oxide layer. This develops from the rainbow colours seen beside welds to a dark and non-protective oxide layer whose thickness depends on the time of exposure and temperature reached. The street rubbish bin shown suffered from a fire but remained functional for almost a year (until the repair cycle reached it) with a decorative rainbow oxide. By way of comparison, powder coated bins would suffer from unsightly burn marks and corrosion. 

For austenitic alloys such as 304 and 316, the temperature limits for lifetime section loss due to oxidation is about 870oC (with temperature cycling) so they are routinely used in high temperature furnaces and ductwork. The current trend to apply decorative coatings to stainless steels would require an assessment to determine the combustibility, potential fumes and flame spread of the coating. Tests to AS/NZS 1530.3 would be appropriate. 

Microstructural effects of a short-term heat cycle (less than a couple of hours of exposure, such as a fire) could include carbide precipitation (sensitisation) in an austenitic alloy which was not an L grade (i.e. carbon >0.03%). Duplex and weldable ferritic grades should not have sufficient carbon for sensitisation. Sensitisation would degrade the corrosion resistance but not affect mechanical properties. Both duplex and ferritic grades can suffer 475oC embrittlement, however data produced by the International Molybdenum Association (IMOA) shows that this requires more than two hours in the 400oC to 500oC range for a 50% reduction in toughness. This duration is unlikely in most fires.

 

Will stainless steel provide a barrier to flames and if it does, how rapidly will the heat penetrate the barrier sufficiently to cause damage (usually a specific temperature rise) on the far side? 

A satisfactory demonstration is supplied by reference BS 647 Part 22 tests carried out for a British Stainless Steel Association (BSSA) member, Stewart Fraser, who manufacture 316 framed doors which include a cavity filled with non-combustable boards. The results are given at www.bssa.org.uk/topics.php?article=106.

It showed slight discolouration and distortion on the flame impingement side with the sheltered side of the door reaching only 98oC after 60 minutes. The test was continued for another 80 minutes without the failure of flame containment or subsequent opening of the door in its frame. Similar testing was carried out on a 1.5mm thick 2304 duplex sheet fabricated into a simulated ship’s bulkhead with enclosed ceramic wool insulation. With a bright orange glow of an 1100oC metal temperature on the flame side, the “safe” side reached 30oC after 40 minutes and 110oC after 60 minutes. The test was terminated after 120 minutes with containment still satisfying IMO resolution A518 (XIII).

 

What are the effects (both during and after an event) to the mechanical properties of stainless steel? How do these compare with structural carbon steels? 

There are tests as well as a theoretical basis which demonstrate that both austenitic and duplex stainless steels have superior high temperature properties compared to carbon steel. The table below shows the deflection and failure modes of three metre long commercial electrical cable trays loaded to simulate actual loadings. They were heated with 18 LPG burners to obtain an average temperature of 1000oC  to 1050oC for at least five minutes. [Nickel Institute publication No. 10042]

    

 

The publication also considers the life cycle costs (LCC) of the use of aluminium, galvanised steel or stainless steel for stairways, handrails, gratings and firewalls, as well as cladding for corridors and accommodation modules on North Sea platforms. Fire risk controls are obviously a major concern although corrosion resistance is also critical. On an LCC basis, stainless steel was most economical especially when its reduced requirement for maintenance periods were included. 

In addition to the above testing in cable tray applications, substantial research and application work has since been carried out and codified. Installations include 2205 duplex hangers suspending the slab which forms the floor of the emergency ventilation duct in the CLEM7 tunnel in Brisbane [ISSF].

In short term fires such as on balconies or stairways, the temperature rise exposed to an ISO 834 fire temperature profile depends on thickness and emissivity. Polished stainless steels typically have low emissivity of <0.1 and hence a slower temperature rise. Conservatively, after 30 minutes a 12mm sheet of stainless steel with 0.2 emissivity would reach 620oC whereas steel (with no rust) and 0.4 emissivity would reach 750oC.   

When considering strength and deflection, the metal temperatures in a conventional fire do not reach levels to anneal the material so any cold work strengthening will raise the temperature for a 50% strength reduction. In addition, as shown in the graph, the reduction in Young’s Modulus, i.e. deflection from a specific load, is less than that of carbon steel for temperatures above ~200oC. By 600oC the modulus retention for stainless steel is 0.75 compared to 0.3 for carbon steel, i.e. less than half the deflection for a given load.

 

         

 

In summary, stainless steel has substantial advantages in structural use when fire risk is considered, and these advantages continue into higher strength and lower deflections at elevated temperatures.

CLEM7 image above courtesy of Ancon.

This article is featured in Australian Stainless Magazine issue 65, 2019.

 

 

 

Grand Reflections

Innovative Melbournian architecture has delivered a striking stainless steel feature in the city’s latest commercial mixed-use development.

Melbourne is setting the benchmark for world-class design with Collins Square now one of Australia’s largest CBD commercial precincts, covering an entire city block on Collins Street. Already home to a number of leading global corporations and the revitalised heritage-listed Southern Goods Shed, the $2.5 billion project will at completion comprise of five commercial towers and over 10,000sqm of retail space.

Black mirror finish stainless steel columns are the focal point in the lobbies and food precincts of Towers Two and Four of Collins Square. Soaring an impressive 10m to 12m tall at a diameter of 1300mm, the stainless steel-clad columns are complemented by floor-to-ceiling window glass and natural stone masonry walls and floors.

ASSDA Member Fabmetal Specialists supplied, fabricated and installed the grade 304 stainless steel circular columns, using its own patented column cladding system. Twenty stainless steel clad columns were installed across the two towers.

Fabmetal Specialists’ pre-fabricated the customised stainless steel column panels from 1.2mm sheet, and using a modular cladding method, installed the panels with a unique fixing system allowing no visible fixings or caulked joints.

Coloured stainless steel in a No. 8 mirror finish from the company’s TiVox range was used for the project and specified for its upmarket appeal and elegant aesthetics. In addition, stainless steel also offers durability and ease-of-use during construction.

Providing a true mirror reflection, the black chromatic colour (known as ‘Jet Mirror’ in the TiVox range) was achieved with a titanium film using a Physical Vapour Deposition (PVD) coating process. The coating technology offers a number of high chemical and technical features, including resistance to abrasion, scratches and corrosion, and overall minimal maintenance.

The end result is an innovatory, high quality stainless steel finish, bringing life to the surrounding activity of Melbourne’s place-to-be for business and leisure.

This article featured in Australian Stainless magazine - Issue 62 Winter 2018.

 

Stainless Sustains Intricate Brick Facade

Stainless steel is playing a vital role in the structural integrity of a new state-of-the-art library at one of Brisbane’s most prestigious boys’ school.

The Centenary Library at Anglican Church Grammar School was designed by Brand + Slater Architects, and the ambitious project was part of the school’s master plan to provide a technology-rich, world-class centre for its 1800 students. Comprising four levels, the tertiary-inspired building features an extensive range of learning spaces including a 250-seat lecture theatre, teaching and meeting rooms and over 80 individual study areas.

The library stands 23.5m tall on a heritage-listed part of the school campus. Paying homage to the school’s history whilst appealing to a contemporary aesthetic, the library exterior features an intricate brick façade backed by a stainless steel support and restraint system custom-designed and manufactured by ASSDA Member and Accredited Fabricator, Ancon.

Grade 304 stainless steel was used and specified for its longevity, durability and performance properties to meet the building’s 50+ year design life.

Ancon’s specialist knowledge, manufacturing agility and project management service proved invaluable to the contractor when building the detailed façade of the decorative arches and corbelled brickwork with all structural steelwork now unseen.

Shelf Angle Brick Support

Ancon masonry support systems enabled the large-scale brick cladding installation on this impressive education facility to be completed to the highest safety standards, while showcasing its architectural brickwork features.

Ancon’s MDC and CFA continuous shelf angle support systems carry the intricate brick façade, consisting of freestanding archways and projected brickwork. The MDC stainless steel angles are fixed to the reinforced concrete frame, span a 40mm cavity, and create a horizontal shelf to provide the necessary support for up to 3 metres of brickwork.

Cast-In Channel

Ancon’s 30/20 cast-in horizontal channels were used to provide the fixing between the concrete frame and shelf angles. The channel enabled the necessary horizontal adjustment for the installer, and its compact size eliminated the issue of potential clashes with the reinforcement steel in floor slabs.

Nail holes aided the fixing of channels to timber framework and an infill prevented the ingress of concrete during casting. Cast-in fixings do not generate expansive forces in concrete. It can therefore be used at close centres and often used closer to the edges than expansion fittings.

Wall Ties and Restraint Fixings

To restrain the distinctive brickwork details to the reinforced concrete structure, stainless steel L-shaped SPB and SDB frame cramps were fixed into the reinforced concrete using 6mm FBN expansion bolts.

FBN single expansion bolts are a cost-effective anchor and fix into a hole similar to the diameter of the bolt. This allows the hole to be drilled through the hole in the item to be fixed.

Technical Expertise

As part of Ancon’s free design service, plans were produced illustrating the location and reference of all fixings required. Ancon’s early engagement with the project’s structural engineers, Bligh Tanner, enabled a workable and cost-effective design to be agreed upon prior to the build of the complex masonry features. Sharing their expertise with the clients at this stage of the project meant installation difficulties, site delays and unnecessary remedial measures were avoided.

  

 

Centenary Library photo (above); Copyright: Christopher Frederick Jones.

This article is featured in Australian Stainless Magazine #61.

Art Symbolises Community

You return home after a long journey. Imagine being greeted by a beautiful stainless steel sculpture surrounded by landscaped gardens on your return. One ASSDA Member has used stainless steel to symbolise everything we love about our communities: Security, comfort and home.

It’s easy to think of stainless steel in relation to tubes, panels and rolls in the construction industry, but Brisbane-based ASSDA member, Concept Stainless Design, has taken the product and crafted it into stunningly beautiful sculptures for developers Villa World at their new subdivision on the northern Gold Coast.

Located 70km south of Brisbane, Arundel Springs will provide 386 dwellings in a family-friendly environment adjacent to the Coombabah Lakelands Conservation Area and close to Griffith University and light rail services.

Villa World provided the concept design to reflect the organic growth of nature and symbolise the new families and children who will grow in the new suburb. 

The team at Concept Stainless Design adapted the design to match the size of available grade 316 stainless steel sheets. A small curve of 5mm radius was provided at the tip of the fronds to avoid sharp edges. Another small curve of 9mm was used at the gully between fronds to achieve a flawless polished finish.

The sculptures have been designed to withstand winds of up to 160km per hour, an important feature given Arundel Spring’s proximity to the ocean. An internal frame was built to secure the fronds in position, as well as a horizontal base beam hidden within the sculpture and two legs extending down from the base beam into a large buried concrete block. The structural design certification was completed by Concept Stainless Design’s in-house engineer.

The face of each sculpture was manufactured from grade 316 stainless steel sheet supplied by ASSDA Sponsor Dalsteel Metals.

The sculpture faces are joined along the centre line with an invisible polished butt weld, executed by Concept Stainless Design’s highly skilled tradesman at their Brisbane workshop. The faces were bonded to marine ply and “U” stiffeners were formed from grade 316 stainless steel strips then glued and screwed in. The second face was then placed over the stiffeners, glued and screwed to the ply-bonded face.

The entire project took eight weeks to construct and transported to their new home at Arundel Springs. The sculptures were secured in place by concrete blocks and steel bolts provided by Villa World’s civil contractor in under two hours.

Stainless steel was chosen for the sculptures because of its beautiful, smooth and highly polished finish, and for its low-maintenance properties. Surrounded by clear skies, new vegetation and lush grass, the sculptures welcome residents and visitors alike.

This article is featured in Australian Stainless Magazine Issue 60 (Summer 2017/18).

Impressive Stainless Steel Ribbon Graces New Brisbane Food Gallery

Stainless steel has brought life to a unique food precinct located in a recently opened premium office tower in Brisbane City's Golden Triangle.

Developed and constructed by Grocon, 480 Queen Street’s sustainable and eclectic design boasts a 6 Star Green Star and a 5 Star NABERS rating. The building’s food gallery, otherwise known as Room 480, is located on level 2 and capitalises on the stunning views of Brisbane River and Story Bridge to deliver a restaurant style experience and retreat for diners.

Complementing this space is a suspended stainless steel sculpture, designed by local architecture and interior design practice Arkhefield. Inspired by water flowing around rocks, the ‘stainless steel ribbon’ delicately hangs from the ceiling and weaves over the landscape of the room.

Grade 304 stainless steel was specified for the ribbon feature, using 100m of 0.9 x 600mm coil supplied by ASSDA Sponsor Dalsteel Metals. The 1 tonne of coil was supplied in a Bright Annealed (BA) finish and polyethylene coating on both sides for protection, with one side brighter than the other to fulfill the architectural effect and design requirements.

Arkhefield wanted the ribbon feature to be highly reflective on one side, with a brushed appearance on the other. As it curves and wraps through the space, the bright and flat sides of the stainless steel ribbon interact to reflect the surrounding colours and light, allowing movement and distortion throughout. Stainless steel proved the only material able to achieve this aesthetically appealing finish, whilst providing a high-quality, durable and lightweight structure.

The stainless steel ribbon spans 35m x 6m across Room 480’s ceiling and was installed by ASSDA Member and Accredited Fabricator Stainless Aesthetics.

Stainless Aesthetics Director Mike Mooney said the installation of the entire 1 tonne of stainless steel coil as a continuous ribbon was one of the more challenging aspects of the project. This was successfully achieved using their custom designed and fabricated turntable, which housed the coil and allowed it to unwind safely 3.5m above floor level, while protecting the ribbon’s surface finish.

The installation of the stainless steel ribbon around the light fixtures emphasised the visual appeal of the sculpture and its surface qualities. It is suspended using 3.2mm wire support cables and fixings in grade 316 stainless steel supplied by ASSDA Member Anzor Fasteners.

The stainless steel ribbon is an impressive and visually dynamic integrated element of Room 480, adding colour and movement to a traditionally formal space. In addition, the sculpture provides a level of intimacy to the space that could not be achieved with a standard flat suspended ceiling, providing a pleasant ambience for patrons to dine and relax.

This article is featured in Australian Stainless Issue 57 (Spring 2016).

Images courtesy of Stainless Aesthetics.

Stainless Steel Design Innovation

Brisbane’s iconic Story Bridge is sporting increased safety measures with the application of innovative stainless steel products and laser-fusion technology.

 The 76-year old heritage-listed cantilever bridge now incorporates three-metre tall, stainless steel safety barriers on its pedestrian walkways, as a result of an outstanding collaboration between multiple project stakeholders. Completed in December 2015, the $8.4 million project was led by design and construct head contractor, Freyssinet.

The design brief was to develop an anti-climb structure that was both functional and aesthetically appealing, whilst ensuring the heritage values of the bridge were maintained.

This presented a number of engineering challenges, including the affixation of the barrier structure to the existing heritage-listed bridge without permanent methods of attachment, such as welding or other damaging techniques, whilst addressing the weight and wind load tolerances, ambient vibrations and noise potential.

Visually, there was also a key design requirement to ensure pedestrian views of the river, Brisbane city and surrounds, and of the Story Bridge itself, was preserved.

The initial reference design was specified in stainless steel (with an option for painted carbon steel) and required the fabrication of heavy box sections for over 1000 posts to support a tamper-resistant, horizontal balustrade cable system. The outrigging was specified in carbon steel, with isolation joints to support the upright posts. However, aesthetically, this design created a clutter of vertical elements.

Freyssinet developed an alternative design concept employing Carl Stahl X-TEND® stainless steel mesh, and engaged ASSDA Member Ronstan Tensile Architecture to assist in the design rationalisation. Ronstan Tensile Architecture conducted form-finding analysis to mimic increasing the mesh self-span between the posts. The findings resulted in a substantial reduction in the number of posts required and a more secure fall-restraint system than initially designed.

Replacing the original tension wire design with a mesh barrier significantly reduced the structural loading on the posts, allowing for a smaller number of lighter duty posts, and reducing the cost below the initial estimate.

The concept solution delivered was a dynamic structural design that met the exacting demands of the specification. The design evolved to using laser-fused stainless steel open section beams for the posts, positioned approximately three metres apart with a blackened Carl Stahl X-TEND® stainless steel mesh barrier.

This project is the largest to date in Australia using laser-fused stainless steel structural beams.

Low impact laser-fusion is a process that allows the welding together of pre-polished flat components to a special profile without damaging the visible surface. It provides an effective and economical alternative to extrusions or conventional welds, providing closer tolerances, superior joint integrity and more consistent finishes.

The introduction of laser-fused stainless steel structural beams into the Australian market allowed Freyssinet the flexibility to plan and design with stainless steel in an outcome that was unrivalled for the project scope. Developed and manufactured by Montanstahl (Switzerland) and its subsidiary Stainless Structurals Asia (Singapore), the laser-fused stainless steel structural beams were supplied by ASSDA Sponsor Atlas Steels, as the exclusive agent for the product in Australia.

To this end, Atlas Steels supplied over 30 tonnes of stainless steel for the project, including 316L grade 80x80x6mm I-beam sections for the 530 upright posts, 316 grade 65x65x6mm angle bars for the outrigging, and 316 grade 38.1x1.6mm 320 grit polished tube for the framing of the mesh.
The I-beams supplied were made from a pre-polished strip with a <0.5Ra finish. The I-beam components were laser cut, polished, and then laser-fused together.

Freyssinet rolled the I-beams using a local roll forming company in Eagle Farm to form a curve, following several prototypes to achieve the required design. The beams were then delivered to ASSDA Accredited Fabricator Stainless Engineering Services to cut the posts to the specified height, verify the dimensions, placement and drilling of the holes for the bolt connections, and passivate the posts to ASTM 380 prior to installation.

Stainless Engineering Services also used the offcuts from the I-beams to fabricate the brackets, ensuring no material wastage.

ASSDA Member Anzor Fasteners supplied 550 units of grade 316 stainless steel coupling cables in various lengths of up to 2.1 metres, in 4mm diameter and 1/19 configuration. Each cable was swaged to a threaded stud on one end and a u-shaped fork coupling on the other end. The coupling cables were used to affix the X-TEND mesh to the posts, providing an adjustable method of attachment.

Following the erection of the posts, Ronstan Tensile Architecture supplied and installed 3400m2 of Carl Stahl X-TEND® 316 grade stainless steel mesh constructed from coloured stainless steel wire rope. The stainless steel was blackened with an additional polyester amino resin, which was hardened to the wire under temperature.

The blackened Carl Stahl X-TEND® mesh was the key to achieving an unobtrusive composition and historical aesthetic, while providing the flexibility and tensile strength required for the structure’s design and use of the laser-fused posts.

The structure is a pivotal safety addition to the Story Bridge and exudes functionality in its excellent and unique engineered design. Stainless steel is unmatched in the materials selection for providing durability, structural performance, low maintenance, corrosion resistance and aesthetics.

This article is featured in Australian Stainless Issue 56 (Winter 2016).

Photography by Fullframe Photographics.

Stainless in Color

A modern and innovative design using coloured and textured stainless steel has left an impressive statement on an Adelaide streetscape.

South Australia’s premier shopping district Rundle Mall underwent a full makeover from 2012-2014 as part of the Adelaide City Council’s initiative to revitalise the precinct.

Part of this redevelopment included a redesign of the facade of a commercial tower at 80 Grenfell Street, housing the Adelaide headquarters of the Bendigo and Adelaide Bank.

Design practice HASSELL delivered an iridescent façade design using coloured stainless steel cladding, supplied by ASSDA Member Steel Color Australia. The extent of the façade referred to as ‘the ribbon’ cascades over 10 storeys, connecting the office tower to the lobby entrance via the retail parapet. The ribbon was made up of over 100 panels that twist and bend over the full height of the building, creating an artistic ripple effect.

HASSELL and Arup’s façade engineering team tested this unique design with physical and virtual models, further refining the design detailing with extensive prototyping. This collaboration with the assistance of Steel Color Australia’s product and material knowledge ensured this remarkable design element was feasible.

Stainless steel was specified for this design as its inherent properties allowed for the level of manipulation required to construct the architect’s creative expression, as well as provide a high quality and aesthetically pleasing finish.

Over 1500m2 of grade 304 stainless steel in 4000x1250x1.2mm sheet in a Rosso colour (Italian for red) was supplied by Steel Color Australia, as the sole distributor in Australia and New Zealand for embossed, coloured, mirror finished and textured stainless steel manufactured by Steel Color S.p.a in Italy.

Steel Colour Australia owner Vince Araullo said that electro-colouring (INCO system) is the main technology in Steel Color Australia’s production. ‘The stainless steel sheet’s surface was directly altered, chemically stimulating the natural passivation of the material. No painting was involved in the process, increasing the pitting resistance of the stainless steel.’

In terms of manipulating the steel’s shape, Araullo said that colouring is an intrinsic part of the stainless steel. ‘This means the stainless does not lose colour during shaping, as opposed to aluminium for example which would need to be coloured after folding due to the fragility of the coloured anodic coating.’

Steel Color Australia facilitated the overseas production of some 270 sheets, weighing 10 tonnes and their shipment to the project site. Modular framework was constructed to bend the stainless sheets into shape for easy installation on site by crane.

The visually striking building façade integrates impressively into the Rundle Place precinct, and the outcome has resulted in a virtually maintenance-free and colour enduring structure.

This article is featured in Australian Stainless Issue 56 (Winter 2016).

Images courtesy of Steel Color Australia.

Stainless Steel Leads a Stellar Redevelopment

When Sydney's Star City Casino emerged from the chrysalis of its construction scaffolding, its metamorphosis included a gleaming 340m2 stainless steel-and-glass canopy facing the harbour.

ASSDA Member TripleNine Stainless fabricated and installed the canopy over the main entrance of ‘The Star’, as it is now known, as part of an $850 million redevelopment. This transformation saw Sydney’s only casino swing its orientation 180° from Pyrmont’s fish markets toward the city’s glittering Darling Harbour.

The Star’s façade was designed by Fitzpatrick + Partners and is comprised of 147 flags of clear, low-iron glass supported by two fingers of 20mm and 166mm plate stainless steel. The surfboard-shaped canopy is 40m x 8.5m and made of 300 nominal bore pipe with a lattice effect created by 100 x 50 rectangular hollow sections. All 18 tonnes of stainless steel is 316 grade and was supplied by ASSDA sponsor, Atlas Steels.

Peter Petro, the site architect for the project, says stainless steel was the obvious choice from both a practical and an aesthetic point of view. ‘From a practical perspective, we chose stainless steel because it’s so close to the water and we needed something that was resilient.’

In terms of aesthetics, Petro says they wanted a high-quality finish for the front of the building and stainless steel was a prime choice. ‘We also had a lot of lighting design so we wanted something that would bounce the light around. We were able to give the stainless steel a polish that also matched the glass façade upstairs. This gives it a playfulness at night and a high finish during the day.’

TripleNine’s Director, Justin Brooks, says electropolishing wasn’t an option because of the massive size of the canopy. ‘Instead, it was polished to 400 grit then passivated with an Avesta product.’

Brooks says the project's engineers and designers, Yuanda, employed a Feng Shui expert to sign off on the canopy before
it was built at TripleNine’s purpose-hired workshop. ‘The basic geometry came from the client but we did the design detailing because of all the different shapes and angles,‘ explains Brooks.

The $1.4 million canopy project commenced in August 2010 and was completed in January 2011 with about 15 people assigned to the project. The canopy was built in one piece and transported with a police escort in the dead of the night on the back of a truck with front and rear steering. Installation took only two days, says Brooks.

During the design-detailing phase, TripleNine employed 3-D modelling and Yuanda’s engineers gave careful consideration to expansion and
contraction. ‘Because [the canopy] was so big, we needed to include some bridge building technology,’ says Brooks. ‘We used expansion pads as the canopy was calculated to expand up to 50mm across the total length of it.’

‘The Star’ is a bright, light addition to the harbourside landscape. While the elements of Feng Shui can’t be guaranteed to produce financial fortune in The Star’s casinos, the stainless steel canopy is certain to maintain its appeal for decades to come.

Images courtesy of TripleNine Stainless.

This article is featured in Australian Stainless, issue 52.

Reflected Glory

Stainless steel’s star has ascended in the public’s conscience as thousands of Westfield Sydney shoppers enjoy the world-class design and materials on show in its newest retail development.

Covering 103,000m2, the $1.2 billion Westfield Sydney development is bound by the Pitt Street Mall and Market and Castlereagh Streets in the heart of Sydney’s CBD. It integrates Westfield Centrepoint, the Centrepoint Convention Centre, Imperial Arcade and Skygarden, plus a new office tower at 85 Castlereagh Street and an extensively modified and refurbished tower at 100 Market Street.

While the size of the project is enormous, it’s the design that’s turning heads. With a nod to lauded international developments in Paris and Frankfurt, the architects of Westfield Sydney have created a stunning environment that makes extensive use of mirror and hairline finished stainless steel in the interior spaces.

Stainless steel was chosen by Westfield’s architects to create a very upmarket, stylish environment for shoppers. In addition to meeting the design intent, stainless steel also offers durability and ease-of-use during construction.

ASSDA Accredited Townsend Group was chosen to design, fabricate and install stainless steel elements throughout the complex, a task it was confident to undertake due to its experience delivering exceptional quality products to exacting clients, such as Apple Inc.

Townsend was awarded the following elements using only 316 grade stainless steel:

›    8,500m2 of mirror-finished stainless steel troughs and particle board infills in the feature ceilings on levels 3 and 4
›    Composite stainless steel panel cladding of the escalators on all levels
›    Black glass and mirror-finished stainless steel on the escalator soffits in void 4
›    Hairline-finished stainless steel composite panel cladding in voids 1 to 10
›    Mirror-finished stainless steel cladding of the elliptical column in void 1 from levels 1 to 5.

The project’s innovative design and engineering required the use of Townsend’s Vee-Cutter, the only one of its type in Australia, to create a very tight radii on the corners on some of the architectural elements. No additional services or treatments were required before or after installation as the stainless steel was procured with a protective film that remained on the product through the manufacturing process until the installation was complete.

Townsend Managing Director and CEO Russ Hill stated that the company was excited when selected for this prestigious development. The complexity of the project presented many challenges which Townsend was able to meet through its skill and experience, resulting in a finish which met the brief set by Westfield and its architects.

Images courtesy of Townsend Group.

This article is featured in Australian Stainless magazine - Issue 50, Summer 2011/12.

Stainless Strengthens Walls

The devastation of the 1989 Newcastle earthquake resulted in a revision of standards specifying building materials and products to be used in differing environments. 

One of the products that came under close scrutiny was wall ties (also known as brick ties).

Assessment of the damage after the earthquake found that many walls had 'peeled away' from building structures due to deteriorated wall ties.

A wall tie connects masonry to the structural backing which supports the wall. The most common wall ties are manufactured out of galvanised steel.

Australian Standard AS 3700 - 1998 revised the conditions under which wall ties are used and made recommendations about the types of material that should be used in different environments.

The Standard specifies that 316 or 316L stainless steel wall ties should be used in 'R4' category environments. These are severe marine environments, usually up to 1 00 metres from a nonsurf coast or one kilometre from a surf coast, where the highest airborne salinity level at the exterior of the masonry is 300 g/m2/day.

In such environments the chlorides in the air make it highly corrosive and not suitable for wall ties manufactured from materials that are susceptible to corrosion.

However this requirement is the subject of debate, with some specialists suggesting that corrosive environments stretch well beyond the distances specified in the Standard.

The use of stainless steel wall ties as suggested in the Standard will increase the safety and durability of buildings in corrosive environments for a very small increase in the overall cost. This again leads to the debate about what constitutes a corrosive environment, and whether the Standard should be more conservative.

The revised Standard has been incorporated into the Building Code of Australia and is mandatory for many provisions in the Code. The Australian Building Codes Board anticipates AS3700 - 1998 will become mandatory for the Housing Provisions in January 2000.

Thus, opportunities exist for the stainless industry to be proactive in its approach to such issues, as well as to investigate the use of stainless in other building applications, where durability and strength are principal concerns.

This article featured in Australian Stainless magazine - Issue 13, May 1999.

Chifley stands the test of time

Sydney's recently redeveloped Chifley Square now pays tribute to its namesake in a dramatic, yet personable, manner - an 8m tall stainless steel sculpture of Ben Chifley towers over the square, forming part of City of Sydney's capital works program in the lead up to the Sydney 2000 Olympics.

Chifley_3Sydney artist Simeon Nelson designed 'Ben Chifley' and a glass and stainless steel wall on the site while working as part of the multi-disciplinary design team involved in the site's $3 million redevelopment. Hassell architects (Sydney) were given open guidelines for the design of the site, but two of the objectives were to see Chifley appropriate recognised and to provide a windbreak on the Hunter Street side of the square.

Nelson specified 5 tonnes of 20mm grade 316 stainless plate for two cut-out images of the former war-time treasurer and the post-war Labor prime minister. The plates are positioned in parallel and bolted to a stainless frame, allowing 1mm tolerances.

Nelson designed the sculpture in stainless steel because of its long-term durability. He also felt the material was appropriate because it is often used as an industrial product and Chifley kick-started industrial growth after the war.

The sculpture was fabricated by CBD Prestige Metal Works (Sydney) from material supplied by Sandvik Australia (Smithfield, NSW). After shotblasting by IMP (Sydney), the final surface finishing and passivating was carried out by BHM Stainless Technology Group (Keon Park, Vic) using a specialised process developed by the company for unusual projects of this nature.

Chifley_wallSimilarly impressive is the 'Lightwall, Crucimatrilux' (also fabricated by CBD), which incorporates panes of transparent glass bolted together on nine stainless frames made of 74mm x 20mm bar with a mill finish. Because of the fine tolerances required, dowel and glue were used instead of welds to hold the frames together.

The 10.8m long and 3.2m tall wall serves a structural function as an extension of the back wall of the cafe and also acts as a wind shelter. visually, it provides a contrast with cafe's wall, which is made from white coated glass.

The redevelopment of the site, which is semi-circular in shape and divided in half by Philip Street, was aimed at unifying the two spaces to reflect the original intent of the site's 1937 design. Together, the Lightwall and Chifley sculpture form part of an impressive, contemporary response to historic town planning.

This article featured in Australian Stainless Issue 11, March 1998.

Everlasting Trees Reflect a Shade of Christmas

As we pack up our Christmas decorations, vow to lose those extra kilos gained over the holidays and make plans for the new year, the festive season seems so long ago - not so far for travellers and pedestrians on St Kilda Road in Melbourne.

Perched in front of Central Equity's three new apartment buildings are 12 three metre tall stainless steel trees which, although not specifically designed as Christmas trees, have stylised conical shapes that have a distinctly Christmas 'feel' about them.

Central Equity commissioned Phillip Naughton of Design Inferno to design the trees to complement the prestigious $123 million complex.

"Trees were specifically chosen for the design to reflect the living trees on the boulevard in front of the building," Mr Naughton said.

"They also add a human element to the complex. Because the buildings are 24 stories high, the architects, the Span Group, paid close attention to the surrounding landscape to ensure that they would not be imposing.

"We worked closely with the Span Group when designing the trees so that they would add to the feel of the complex," Mr Naughton said "In fad, unless you look straight up, you don't realise the scale of the buildings because their surrounds are so comfortable."

Stainless steel was chosen for the design for its inherent qualities.

"The design brief specified that the trees had to be low maintenance. Stainless steel fitted this brief as well as adding other qualities such as simplicity and the sense of movement that could be achieved through different surface finishes," Mr Naughton said.

"As one side of each tree is mirror finished, with the other side satin finished, they reflect the seasonal colours of the living trees on the boulevard. They have changed from reflecting little colour through the winter months when the deciduous trees were without leaves, to reflecting the lush green growth of spring."

According to Joe Delacruz of DBM Industries, the trees' fabricator, welding was the most difficult aspect of the fabrication.

"The design of the trees made them susceptible to buckling during welding," Mr Delacruz said.

"To add to the difficulty, the welds had to be invisible."

As part of the careful planning for the job, DBM first built scale models of the trees from timber.

The trees were laser cut and mirror finished at DBM Industries' facility at Reservoir in Victoria. ASSDA members MME Surface Finishing of Seaford in Victoria did the satin finish.

Each tree is made from approximately 400 kilograms of grade 316 stainless steel sheet set into a concrete base which is covered with a 20mm base plate. They are capped with 10 x 30mm capping. ASSDA members Atlas Steels supplied the stainless for the job.

The trees are located on 150 metres of streetscape on St Kilda Road (near the intersection of Toorak Road).

This article featured in Australian Stainless magazine - Issue 15, February 2000.

Let the Games Begin!

When millions around the world watch the Sydney Olympic Games this September, they will also be experiencing the best of Australian architecture, with particular emphasis on stainless steel.

Stadium Australia, located at Homebush Bay in Sydney's inner city in the centrepiece of the Olympic site. Here, events such as the opening and closing ceremonies and the track and field program will be played out. Closer examination of the sit reveals the use of stainless steel in a myriad of applications, both aesthetic and functional. Perhaps more importantly, the use of stainless steel helps meet the organiser's "green" commitment: to use materials with minimal impact on the environment and designs that reduce waste and conserve resources.

THE STADIUM
Seating 110,000, Stadium Australia is the largest stadium in the history of the Olympic Games. To give an idea of its size, the two main curved trusses span 296 metres and four Boeing 747s would fit side by side under the span of the main arch.

The roofing material was supplied by ASSDA member Atlas Steels (Australia) Pty Ltd, the handrails by ASSDA member Sandvik Australia.

Nineteen lighting towers, representing the number of cities in which the Olympic Games have been held to date, stand like sentinels guarding the entrance to Stadium Australia.

The towers consist mostly of concrete and painted steel, but grade 316 stainless steel rods, 25 millimetres in diameter, provide tension in each corner, while 316 doors and infill panels, with a No. 4 finish, exist at ground level.

The names of each of the cities where the Games have been held are glass-bead blasted on to grade 316 sheet with a No. 4 finish.

These towers each carry solar panels that contribute to the public elecricity grid an amount of power equal to that consumed by the towers at night.

At the bottom of one of the towers is a Munich Memorial to honour the athletes who died at the 1972 Munich Olympics. The memorial consists of three plaques fabricated from grade 316 stainless steel and glass, the names being engraved and paint filled in a surface with a No. 4 finish. Stainless steel channel sections, glass bead blasted on the inside and mirror polished were used around some of the edges.

Spread over six levels, the kitchens at Stadium Australia will see almost as much action as the field! Anticipated to feed about 110,000 people every day during competition, the kitchens have been fitted out with stainless steel equipment including benches, exhaust hoods, 200 deep-fat fryers and 300 upright refrigerators. ASSDA members Curtin Foodservice Equipment Pty Ltd supplied a bulk of the equipment, including over four and a half kilometres of stainless steel benches, 145 stainless steel hi-velocity extraction hoods, 200 deep-fat fryers, bain maries, refrigeration equipment, bulk and plated hot food holding carts and more than 200 mobile trolleys. Grade 304 stainless steel for the equipment was provided by ASSDA member Fagersta Steel.

THE OLYMPIC VILLAGE
Home to 15,000 athletes, officials and coaches during competition, the Olympic Village reflects stainless steel's contribution to the "Green Games". 6,000 kilograms (10,500 square metres) of grade 316 stainless steel mesh were installed to provide a chemical-free termite barrier to over 500 houses in the Village.

Fabricated and installed by Termi-Mesh Sydney Pty Ltd, the stainless steel mesh provides a physical barrier around the building perimeter and is collar clamped to pipes and other entry points. The result is a permanent obstruction to termites that eliminates the use of potentially dangerous chemicals.

OLYMPIC BOULEVARD
Olympic Boulevard, which passes key venues such as Stadium Australia and the Aquatic Centre, features spectacular fountains with stainless steel components.

Water jets, each covered by a grade 316 stainless steel cowl, provide a cascading arch at Fig Grove.

Fabricated grade 316 stainless steel gratings, black chrome plated so they are almost invisible under water, are used as safety screens. Grade 316 sections are also used to ensure the water cascades evenly along the length of the feature and as structural supports.

At the far end of the Boulevard is a fountain featuring lines of tubular water jets. Each jet comprises an inner structure of grade 316 stainless steel tubes clad with 3 millimetre thick 316 sheet, formed into a tapered cylindrical section with a No. 4 finish.

The underground pump house receives fresh air through spiral, welded ducting consisting of 250 millimetre diameter grade 316 stainless steel. A nearby wooden viewing pier has 316 handrails on galvanised steel uprights.

THE TORCH
Perhaps the most evocative symbol of the Games is the Olympic Torch, which carries the flame from Olympia in Greece to Stadium Australia, via the Olympic Torch Relay.

he design of the approximately 1 kilogram, 72 centimetre tall torch includes three layers representing earth, fire and water. The inner layer is polished stainless steel, the middle layer anodized aluminium and the outer layer specially coated aluminium.

Thin grade 316 stainless steel strip was used to form a skin inside the grade 430 stainless steel tube inner layer, acting as a shield against heat, wind and rain. Also, very fine (25 micron opening) 316 stainless steel gauze was installed as a final filter to clean the liquid propane/butane gas mixture that fuels the torch, thereby preventing contaminants from extinguishing the flame.

The torch was fabricated by Sydney firm GA & L Harrington, who produced over 14,000 torches available for purchase by the 10,000 runners participating in the Torch Relay.

This article featured in Australian Stainless magazine - Issue 16, August 2000.