Logo


Immerse yourself in stainless luxury

Setting the benchmark in boutique luxury and innovation using stainless steel is Brisbane’s Emporium Hotel.

Developed by the Anthony John Group, The Emporium Hotel opened in July 2018. Nestled in the premier lifestyle and cultural precinct of South Bank, the 143-suite hotel is turning heads with its exquisite interior design, bespoke handcrafted features and luxurious facilities.

Stainless steel was the material of choice for the five-star hotel and selected for its quality, opulent aesthetic and luxury appeal. Over 5.5 tonnes of grade 304 stainless steel sheet, 1.2mm thick in a No. 8 mirror finish was used throughout the five-star hotel and supplied by ASSDA Member Fagersta Steels

ASSDA Member and Accredited Fabricator, Langford Metal Industries, was engaged to laser cut the mirror finish material to bring the developer’s trademark design to life, which was installed by Thump Architectural.

The frangipani inspired pattern represents the Queensland theme and character, and the laser cut stainless steel prevails throughout the hotel on mullions, sliding doors, external panels, columns, cabana suites surrounding the 23m infinity edge pool – almost anywhere and everywhere, serving both a functional and decorative purpose.

A remarkable feature of the hotel is its rooftop bar on the 21st floor, The Terrace. Presenting panoramic views of South Bank Parklands, the Brisbane River and the city skyline, The Terrace maximises the warm Queensland weather with two retractable roofs offering full, partial or no exposure.

Measuring 7.5m long, 2.1m wide and 50mm thick, the ceiling of the first retractable roof features the impressive frangipani stainless steel design. The sliding panel is a composite structure incorporating insulation and structural members which are clad top and bottom with mirror polished stainless sheet. For structural purposes, the panel was shaped into a shallow moon profile to form the roof’s arch. When retracted, a second roof made of glass is revealed, which is also retractable for a complete outdoor rooftop experience.

The stainless steel ceiling and surrounding elements complement the rooftop bar’s sub-tropical luxe vibe with ceiling-to-floor glass doors, lush greenery, and white backlit onyx floor tiles and bar.

 

Photo Credit: Emporium Hotel

Luxe Stainless

A new luxury home renovation in Cottesloe, Western Australia is leading the way in cutting-edge bathroom design with a statement stainless steel wall.

ASSDA Member and Accredited Fabricator ALLOY’s stainless steel mosaic tiles are featured in the bathroom designed by Nina Dempster of Ozbyrd Design and architect Paul Jones RBA of a recently constructed addition by builder Adrian Zorzi.

The alluring back wall of the walk-in shower is lined with ALLOY’s “SWISS CROSS” 30x30mm stainless steel mosaic tiles. The mixture of the No. 4 and No. 8 brushed and mirror finish 304-grade solid tiles offers a textured finish with a glimmering light reflection and decorative appeal.

The client wanted a brilliant surface finish to enhance the space and grandeur, particularly with no natural light feeding into the area. Stainless steel delivers the brief, with its reflective sheen and the added benefits of the material’s hygienic properties and durable nature. It also plays an important aesthetic role in the camouflage of water spots. 

The entire shape of ALLOY’s mosaic tile has a unique bevelled edge, and its manufacture from 1.6mm thick sheet ensures the tile will not dent, crack or de-laminate. No surface treatment was required on the stainless steel, being installed in an indoor environment.

The end result is a high quality, precision-engineered stainless steel product striking a balance between function and luxury style.

Photo credit: Ryan North, and are subject to copyright.

This article is featured in Australian Stainless Magazine issue 65, 2019.

 

Stainless Steel and Fire Resistance

What is the fire rating of stainless steel? This is a common enquiry from ASSDA Members and the construction industry, especially with the current concerns about flammable cladding. The three major branches to this question are covered in this article.

 Will stainless steel burn, and if it does, will it give off fumes or facilitate the spread of fire?  

This question is readily answered because stainless steels are steels. It is recognised that steels do not burn and only start to melt at about 1400oC. This means that stainless steels do not have a “fire rating” as such, so the tests of AS/NZS 1530.3 (or the equivalent tests in BS 476) are not required.

Heating in a fire will obviously have an appearance effect because, unlike the transparent nanometer-thick passive layer formed in moist air, stainless steels heated above about 300oC in air discolour as they grow a less dense oxide layer. This develops from the rainbow colours seen beside welds to a dark and non-protective oxide layer whose thickness depends on the time of exposure and temperature reached. The street rubbish bin shown suffered from a fire but remained functional for almost a year (until the repair cycle reached it) with a decorative rainbow oxide. By way of comparison, powder coated bins would suffer from unsightly burn marks and corrosion. 

For austenitic alloys such as 304 and 316, the temperature limits for lifetime section loss due to oxidation is about 870oC (with temperature cycling) so they are routinely used in high temperature furnaces and ductwork. The current trend to apply decorative coatings to stainless steels would require an assessment to determine the combustibility, potential fumes and flame spread of the coating. Tests to AS/NZS 1530.3 would be appropriate. 

Microstructural effects of a short-term heat cycle (less than a couple of hours of exposure, such as a fire) could include carbide precipitation (sensitisation) in an austenitic alloy which was not an L grade (i.e. carbon >0.03%). Duplex and weldable ferritic grades should not have sufficient carbon for sensitisation. Sensitisation would degrade the corrosion resistance but not affect mechanical properties. Both duplex and ferritic grades can suffer 475oC embrittlement, however data produced by the International Molybdenum Association (IMOA) shows that this requires more than two hours in the 400oC to 500oC range for a 50% reduction in toughness. This duration is unlikely in most fires.

 

Will stainless steel provide a barrier to flames and if it does, how rapidly will the heat penetrate the barrier sufficiently to cause damage (usually a specific temperature rise) on the far side? 

A satisfactory demonstration is supplied by reference BS 647 Part 22 tests carried out for a British Stainless Steel Association (BSSA) member, Stewart Fraser, who manufacture 316 framed doors which include a cavity filled with non-combustable boards. The results are given at www.bssa.org.uk/topics.php?article=106.

It showed slight discolouration and distortion on the flame impingement side with the sheltered side of the door reaching only 98oC after 60 minutes. The test was continued for another 80 minutes without the failure of flame containment or subsequent opening of the door in its frame. Similar testing was carried out on a 1.5mm thick 2304 duplex sheet fabricated into a simulated ship’s bulkhead with enclosed ceramic wool insulation. With a bright orange glow of an 1100oC metal temperature on the flame side, the “safe” side reached 30oC after 40 minutes and 110oC after 60 minutes. The test was terminated after 120 minutes with containment still satisfying IMO resolution A518 (XIII).

 

What are the effects (both during and after an event) to the mechanical properties of stainless steel? How do these compare with structural carbon steels? 

There are tests as well as a theoretical basis which demonstrate that both austenitic and duplex stainless steels have superior high temperature properties compared to carbon steel. The table below shows the deflection and failure modes of three metre long commercial electrical cable trays loaded to simulate actual loadings. They were heated with 18 LPG burners to obtain an average temperature of 1000oC  to 1050oC for at least five minutes. [Nickel Institute publication No. 10042]

    

 

The publication also considers the life cycle costs (LCC) of the use of aluminium, galvanised steel or stainless steel for stairways, handrails, gratings and firewalls, as well as cladding for corridors and accommodation modules on North Sea platforms. Fire risk controls are obviously a major concern although corrosion resistance is also critical. On an LCC basis, stainless steel was most economical especially when its reduced requirement for maintenance periods were included. 

In addition to the above testing in cable tray applications, substantial research and application work has since been carried out and codified. Installations include 2205 duplex hangers suspending the slab which forms the floor of the emergency ventilation duct in the CLEM7 tunnel in Brisbane [ISSF].

In short term fires such as on balconies or stairways, the temperature rise exposed to an ISO 834 fire temperature profile depends on thickness and emissivity. Polished stainless steels typically have low emissivity of <0.1 and hence a slower temperature rise. Conservatively, after 30 minutes a 12mm sheet of stainless steel with 0.2 emissivity would reach 620oC whereas steel (with no rust) and 0.4 emissivity would reach 750oC.   

When considering strength and deflection, the metal temperatures in a conventional fire do not reach levels to anneal the material so any cold work strengthening will raise the temperature for a 50% strength reduction. In addition, as shown in the graph, the reduction in Young’s Modulus, i.e. deflection from a specific load, is less than that of carbon steel for temperatures above ~200oC. By 600oC the modulus retention for stainless steel is 0.75 compared to 0.3 for carbon steel, i.e. less than half the deflection for a given load.

 

         

 

In summary, stainless steel has substantial advantages in structural use when fire risk is considered, and these advantages continue into higher strength and lower deflections at elevated temperatures.

CLEM7 image above courtesy of Ancon.

This article is featured in Australian Stainless Magazine issue 65, 2019.

 

 

 

Stainless Shines in Darling Harbour

Mirror finished stainless steel sign blades can be found scattered along the central boulevard of Sydney’s revitalised Darling Harbour.

Through a recent $3.4 billion transformation, Darling Harbour has become Australia’s largest entertainment and events precinct boasting world class facilities, including over 40,000 square metres of exhibition space. This urban rejuvenation builds on the success of Darling Harbour and in turn, will generate $200 million annually in economic benefit for the NSW economy.

The Harbour is ringed by attractions, entertainment and extraordinary waterfront restaurants. The Boulevard creates an active north-south pedestrian connection between Central Station and Cockle Bay. Its prime location is within walking distance of most points in the Sydney CBD therefore wayfinding signage is pivotal in navigating people through and around the precinct.

ASSDA Member and Accredited Fabricator Stoddart were engaged by Lend Lease to manufacture and install 19 stainless steel wayfinding sign blades for Darling Harbour’s ‘once in a generation’ re-development. The sign blades are featured in groups of two and three, each standing seven metres tall and two metres wide.

258 panels of grade 316 stainless steel were used for the sign blades in order to provide housing for LED display screens throughout the precinct. The structural stainless steel frame also mounts speakers and power outlets. All stainless steel used in this project was supplied by ASSDA Member, Fagersta Steels

Featuring a mirror profile finish, the stainless steel signs create a stunning visual effect through the reflection of the countless city lights and surrounds of the bustling tourist and entertainment mecca.

Stainless steel was specified by landscape architects, Hassell, for its aesthetic appeal and high-quality attributes. The Harbour’s salt water environment and location was also a consideration in the materials specification, being adjacent to the city centre.

It is only fitting for quality material such as stainless steel to be showcased in one of the world’s most desirable entertainment and event destinations.

This article featured in Australian Stainless magazine - Issue 64, Summer 2018/19.

Stainless Opulence

Exemplary stainless steel craftmanship has delivered a sophisticated and lavish cocktail lounge in the heart of the Gold Coast’s entertainment hub.

Cocktail connoisseurs have been flocking to Cherry, The Star Gold Coast to experience the designer drinks on offer in the grandeur of the lounge featuring a 22m long bar. Refurbished in 2017 as part of the first stage of the property’s major transformation, its upmarket look and feel was inspired by its sister venue at The Star Sydney.

Central to Cherry’s luxury design is the intricate, gold metalwork featured in the VIP booth screens, lounge surrounds and balustrades. ASSDA Member and Accredited Fabricator Minnis & Samson fabricated these elements using grade 316 stainless steel tube and flat bar supplied by ASSDA Member Australian Stainless Distributors

The stainless steel was mirror polished prior to the electrostatic application of a special coating to achieve the gold colour finish. Crystal hardware and lush red velvet furnishings complement the gold stainless steel to deliver the opulent design and vision of the cocktail lounge.

Stainless steel is a high quality and high strength material, and was specified for its longevity, hygienic properties and aesthetic appeal. In addition, stainless steel offered better weldability to achieve the detail in the metalwork’s curvature design.

This article featured in Australian Stainless magazine - Issue 63, Spring 2018

Grand Reflections

Innovative Melbournian architecture has delivered a striking stainless steel feature in the city’s latest commercial mixed-use development.

Melbourne is setting the benchmark for world-class design with Collins Square now one of Australia’s largest CBD commercial precincts, covering an entire city block on Collins Street. Already home to a number of leading global corporations and the revitalised heritage-listed Southern Goods Shed, the $2.5 billion project will at completion comprise of five commercial towers and over 10,000sqm of retail space.

Black mirror finish stainless steel columns are the focal point in the lobbies and food precincts of Towers Two and Four of Collins Square. Soaring an impressive 10m to 12m tall at a diameter of 1300mm, the stainless steel-clad columns are complemented by floor-to-ceiling window glass and natural stone masonry walls and floors.

ASSDA Member Fabmetal Specialists supplied, fabricated and installed the grade 304 stainless steel circular columns, using its own patented column cladding system. Twenty stainless steel clad columns were installed across the two towers.

Fabmetal Specialists’ pre-fabricated the customised stainless steel column panels from 1.2mm sheet, and using a modular cladding method, installed the panels with a unique fixing system allowing no visible fixings or caulked joints.

Coloured stainless steel in a No. 8 mirror finish from the company’s TiVox range was used for the project and specified for its upmarket appeal and elegant aesthetics. In addition, stainless steel also offers durability and ease-of-use during construction.

Providing a true mirror reflection, the black chromatic colour (known as ‘Jet Mirror’ in the TiVox range) was achieved with a titanium film using a Physical Vapour Deposition (PVD) coating process. The coating technology offers a number of high chemical and technical features, including resistance to abrasion, scratches and corrosion, and overall minimal maintenance.

The end result is an innovatory, high quality stainless steel finish, bringing life to the surrounding activity of Melbourne’s place-to-be for business and leisure.

This article featured in Australian Stainless magazine - Issue 62 Winter 2018.

 

Stainless Provides Strength and Style

Taking pride of place within Perth’s Optus Stadium Park is the Arbour featuring a stainless steel cable net canopy delivered by ASSDA Member Structural Dynamics.

The 60,000-capacity arena is the latest major development to hit Western Australia’s capital, boasting a world-class multi-purpose venue that combines innovative design with community infrastructure.

The impressive Arbour stands 10m tall and 20m wide, and stretches 450m around the south side of the Stadium. It connects a new six-platform railway station to the Swan River, over which the Matagarup Bridge is currently being constructed to provide pedestrian access to East Perth.

Over a thousand stainless steel cables were installed on the 43 arches that make up the Arbour to create a tensile structure in the form of a canopy. Suspended on the structure using bespoke fittings are 3,076 bronzed artwork panels reflecting Whadjuk and Noongar stories. 

Stadium Park was constructed on wetlands with cultural heritage significance to the Indigenous community, and its rich Aboriginal history was the inspiration behind the Arbour’s design.

More than 13 tonnes of grade 316 stainless steel was used, including in excess of 14km of 16mm and 8mm hammaTM X 1x19 wire rope supplied by ASSDA Member Arcus Wire Group, 20,000 bespoke fittings and over 34,000 screws.

Stainless steel was specified for the cable net canopy for its strength and durability to withstand the harsh Western Australian weather conditions, including powerful coastal winds driven from the Indian Ocean. The 16mm edge cables on the structure were tensioned to forces up to 52kN, with the 8mm longitudinal and transversal cables tensioned up to maximum of 11kN.

In addition, the high quality and aesthetical value of stainless steel complemented the Arbour’s design in creating an eye-catching structure for patrons.

Structural Dynamics provided value engineering and practical advice to the project engineer Maffeis Engineering and project architect Hassell on how to best integrate stainless steel tensile systems into the design.

Their in-house team of engineers used structural and finite element analysis as components of the detailed analysis and modelling on how the cable design would behave and interact within a tensile architecture installation.

Structural Dynamics also worked with engineering firm Partridge to undertake the final design, review, slip testing of the bespoke cable clamps and final sign off for the project. Each of the eight different types of cable edge clamps were sent to the National Association of Testing Authorities’ (NATA) accredited laboratory for slip testing under wet and dry conditions to ensure their strength and adequacy.

The cable fittings were designed to the AS 1170 series: Structural Design Action, AS 4100: Steel Structures and AS 2759: Steel Wire Rope – Use, Operation and Maintenance.

Structural Dynamics’ Project Manager Shaun Salmon explained the logistics of the assembly of the Arbour whilst maintaining safe and continued access to the Stadium for more than 1,000 workers. ‘It was important during the installation process that our team of skilled and qualified tradesmen and riggers followed the approved construction sequencing and quality management system processes whilst not impeding access to the Stadium from the primary entry point on the southern concourse. Both temporary and permanent bracing measures were used throughout construction along with sequential tightening and regular cable tension testing to achieve the design intent drape and sag of the cable net canopy and not applying adverse force to any single point on the structure.’

Structural Dynamics’ collaboration with the multiple stakeholders involved in the Arbour design and construction ensured the successful delivery of a custom-designed stainless steel cable net canopy providing the flexibility, tensile strength and structural performance required.  

Optus Stadium officially opened on 21 January 2018 and is the new home game venue of local Australian Football League teams Fremantle Football Club and the West Coast Eagles.

 

        

 

Arbour photos courtesy of Structural Dynamics. Photography by Abigail Harman.

Aerial photo of Optus Stadium Park courtesy of MakMax.

This article is featured in Australian Stainless Magazine #61.

Stainless Sustains Intricate Brick Facade

Stainless steel is playing a vital role in the structural integrity of a new state-of-the-art library at one of Brisbane’s most prestigious boys’ school.

The Centenary Library at Anglican Church Grammar School was designed by Brand + Slater Architects, and the ambitious project was part of the school’s master plan to provide a technology-rich, world-class centre for its 1800 students. Comprising four levels, the tertiary-inspired building features an extensive range of learning spaces including a 250-seat lecture theatre, teaching and meeting rooms and over 80 individual study areas.

The library stands 23.5m tall on a heritage-listed part of the school campus. Paying homage to the school’s history whilst appealing to a contemporary aesthetic, the library exterior features an intricate brick façade backed by a stainless steel support and restraint system custom-designed and manufactured by ASSDA Member and Accredited Fabricator, Ancon.

Grade 304 stainless steel was used and specified for its longevity, durability and performance properties to meet the building’s 50+ year design life.

Ancon’s specialist knowledge, manufacturing agility and project management service proved invaluable to the contractor when building the detailed façade of the decorative arches and corbelled brickwork with all structural steelwork now unseen.

Shelf Angle Brick Support

Ancon masonry support systems enabled the large-scale brick cladding installation on this impressive education facility to be completed to the highest safety standards, while showcasing its architectural brickwork features.

Ancon’s MDC and CFA continuous shelf angle support systems carry the intricate brick façade, consisting of freestanding archways and projected brickwork. The MDC stainless steel angles are fixed to the reinforced concrete frame, span a 40mm cavity, and create a horizontal shelf to provide the necessary support for up to 3 metres of brickwork.

Cast-In Channel

Ancon’s 30/20 cast-in horizontal channels were used to provide the fixing between the concrete frame and shelf angles. The channel enabled the necessary horizontal adjustment for the installer, and its compact size eliminated the issue of potential clashes with the reinforcement steel in floor slabs.

Nail holes aided the fixing of channels to timber framework and an infill prevented the ingress of concrete during casting. Cast-in fixings do not generate expansive forces in concrete. It can therefore be used at close centres and often used closer to the edges than expansion fittings.

Wall Ties and Restraint Fixings

To restrain the distinctive brickwork details to the reinforced concrete structure, stainless steel L-shaped SPB and SDB frame cramps were fixed into the reinforced concrete using 6mm FBN expansion bolts.

FBN single expansion bolts are a cost-effective anchor and fix into a hole similar to the diameter of the bolt. This allows the hole to be drilled through the hole in the item to be fixed.

Technical Expertise

As part of Ancon’s free design service, plans were produced illustrating the location and reference of all fixings required. Ancon’s early engagement with the project’s structural engineers, Bligh Tanner, enabled a workable and cost-effective design to be agreed upon prior to the build of the complex masonry features. Sharing their expertise with the clients at this stage of the project meant installation difficulties, site delays and unnecessary remedial measures were avoided.

  

 

Centenary Library photo (above); Copyright: Christopher Frederick Jones.

This article is featured in Australian Stainless Magazine #61.

Art Symbolises Community

You return home after a long journey. Imagine being greeted by a beautiful stainless steel sculpture surrounded by landscaped gardens on your return. One ASSDA Member has used stainless steel to symbolise everything we love about our communities: Security, comfort and home.

It’s easy to think of stainless steel in relation to tubes, panels and rolls in the construction industry, but Brisbane-based ASSDA member, Concept Stainless Design, has taken the product and crafted it into stunningly beautiful sculptures for developers Villa World at their new subdivision on the northern Gold Coast.

Located 70km south of Brisbane, Arundel Springs will provide 386 dwellings in a family-friendly environment adjacent to the Coombabah Lakelands Conservation Area and close to Griffith University and light rail services.

Villa World provided the concept design to reflect the organic growth of nature and symbolise the new families and children who will grow in the new suburb. 

The team at Concept Stainless Design adapted the design to match the size of available grade 316 stainless steel sheets. A small curve of 5mm radius was provided at the tip of the fronds to avoid sharp edges. Another small curve of 9mm was used at the gully between fronds to achieve a flawless polished finish.

The sculptures have been designed to withstand winds of up to 160km per hour, an important feature given Arundel Spring’s proximity to the ocean. An internal frame was built to secure the fronds in position, as well as a horizontal base beam hidden within the sculpture and two legs extending down from the base beam into a large buried concrete block. The structural design certification was completed by Concept Stainless Design’s in-house engineer.

The face of each sculpture was manufactured from grade 316 stainless steel sheet supplied by ASSDA Sponsor Dalsteel Metals.

The sculpture faces are joined along the centre line with an invisible polished butt weld, executed by Concept Stainless Design’s highly skilled tradesman at their Brisbane workshop. The faces were bonded to marine ply and “U” stiffeners were formed from grade 316 stainless steel strips then glued and screwed in. The second face was then placed over the stiffeners, glued and screwed to the ply-bonded face.

The entire project took eight weeks to construct and transported to their new home at Arundel Springs. The sculptures were secured in place by concrete blocks and steel bolts provided by Villa World’s civil contractor in under two hours.

Stainless steel was chosen for the sculptures because of its beautiful, smooth and highly polished finish, and for its low-maintenance properties. Surrounded by clear skies, new vegetation and lush grass, the sculptures welcome residents and visitors alike.

This article is featured in Australian Stainless Magazine Issue 60 (Summer 2017/18).

The Family of Duplex Stainless Steels

The use of duplex stainless steels has grown globally based on their strength, corrosion resistance and a range of properties that improve equipment life.

The name duplex is sometimes used to describe Alloy 2205 (UNS S31803 or UNS S32205), however duplex is a family of alloys ranging from lean duplex and standard duplex to super duplex stainless steel.

HISTORY

Duplex stainless steel was first developed in France and Sweden in the 1930’s, with the early grades becoming a forerunner for AISI 329, but a lack of control over the chemistry and lack of adequate welding products and techniques impeded development of the product.

Cast versions eventually became available and were subsequently used successfully in many industries where some corrosion, wear and strength were required.  

Areas such as pump components saw a raft of duplex grades developed in standard and super duplex. It should be noted that further work or welding was not required with these particular forms.

In the 1970’s Swedish manufacturers produced and marketed what could be described as a lean duplex called 3RE60 (UNS S31500) with lower chromium, nickel and nitrogen than grade 2205.

3RE60 had success with tubing and displayed excellent resistance in replacing 304 and 316 tubes that had previously failed due to chloride-induced stress corrosion cracking.  The use of 3RE60 in vessels was less successful due to issues such as inter-granular corrosion (IGC) from early welding techniques. The issue was not with the grade but with fabrication, as well as the melting technique to enable control of alloying elements to provide a consistent structure and provide predictable strength and corrosion control.

In the late 1970’s grade 2205 arrived in the market, initially as a tube, then in flat-rolled and other products. The point-of-difference from earlier attempts was well-documented welding technique control, which lead to the increased usage of duplex.

The grades displayed higher strength than standard austenitic grades, excellent resistance to stress corrosion cracking and improved pitting resistance. The other driver was the rising price of nickel, which added a commercial advantage over using a lower nickel duplex product.

GRADES OF DUPLEX

The grades are listed in three groups; standard, lean and super.

The major difference between each grade is corrosion resistance.  This is based on a Pitting Equivalent Number: 

(PREN) = %Cr + 3.3 x %Mo + 16 x %N.

This is a comparative rating that relates to the critical pitting and crevice corrosion temperatures in hi chloride environments (CPT and CCT respectively).

DUPLEX TYPE PREN
Standard Approximately 35
Lean 25-30
Duplex Above 40

USES OF DUPLEX STAINLESS STEELS

Stress corrosion cracking (SCC) is a form of corrosion that occurs with a particular combination of factors:

  • Tensile stress;
  • Corrosive environment; 
  • Sufficiently high temperatures: Normally above 60°C but can occur at lower temperatures (around 30°C in specific environments, notably unwashed atmospheric exposures above indoor chlorinated swimming pools). 

Unfortunately, the standard austenitic steels like 304 (1.4301) and 316 (1.4401) are the most susceptible to SCC. The following materials are much less prone to SCC:

  • Ferritic stainless steels;
  • Duplex stainless steels;
  • High nickel austenitic stainless steels;

 The resistence to SCC makes duplex stainless steels suitable for many processes operating at higher temperatures. Examples of the successful use of duplex stainless steel are hot water tanks, brewing tanks and thermal desalination vessels.

WHERE CARE IS REQUIRED WITH DUPLEX STAINLESS STEELS

Duplex stainless steels can also form a number of unwanted phases if steel is not given the correct processing, notably in heat treatment. Phases like sigma phase leads to embrittlement, meaning the loss of impact toughness, but sigma phase also reduces corrosion resistance.

The formation of sigma phase is most likely to occur when the cooling rate during manufacture or welding is not fast enough. The more highly alloyed the steel, the higher the probability of sigma phase formation. Therefore, super duplex stainless steels are most prone to this problem. Another form of embrittlement occurs above 475°C, and it can still form at temperatures as low as 300°C. This leads to the design limitations on the maximum service temperature for duplex stainless steels.

SUMMARY: DUPLEX CHARACTERISTICS

Compared to the austenitic and ferritic stainless steels, duplex can give:

  • Up to double the design strength;
  • Good corrosion resistance depending on the level required;
  • Good toughness down to -50°C;
  • Excellent resistance to stress corrosion cracking;
  • Welding in thin and thick sections with care;
  • Additional effort required due to high mechanical strength;
  • Up to 300°C maximum in service.

  

Author: Trent Mackenzie is a metallurgist with more than 35 years experience in the industry and General Manager of ASSDA.

Photos courtesy of Outokumpu.

This article is featured in Australian Stainless Magazine Issue 60 (Summer 2017/18).

Wynyard Walk: Where Beauty Meets Function

New infrastructure in the heart of Sydney is set to transform the busy transport hub and provide a stylish new gateway to the Barangaroo development.

21 June 2017

A growing population in Australia's most populous city calls for innovative design, so when the NSW State Government commissioned construction of the Wynyard Walk, ASSDA Sponsor and Accredited Fabricator Stoddart stepped up to the challenge.

The Wynyard Walk forms one of several solutions to break congestion in the Sydney CBD, allowing pedestrians to move from the Wynyard transport hub to the new development at Barangaroo waterfront in six minutes, avoiding steep hills, busy intersections and inclement weather events.

With an estimated 75,000 commuters using the busy hub every day, traffic flow is expected to increase to 110,000 over the next seven years in what is traditionally Sydney's third busiest station.

The tunnel will become the main arterial connection between Barangaroo and the city's transport network and provides vital infrastructure into the future.

THE PROJECT

Alongside CPB Contractors, Stoddart incorporated over 1,600m2 of perforated and solid stainless steel sheeting fabricated into ceiling and fascia pannelling installed in the Clarence Street entrance facade and the tunnel lining. The new Clarance Street entry point is a multi-level portal descending to Wynyard Station via escalators and elevators.

ASSDA Sponsor Austral Wright Metals supplied the project with over 50 tonnes of 445M2 grade stainless steel sheet.

A major consideration for the design team was to ensure aesthetic value for commuters and visitors alike.

THE DESIGN

Inspired by nature and Sydney region geology, the design concept for Wynyard Station focused on flow, with all materials selected to create a sense of motion as part of a unified architectural expression.

The intricate patterns were all designed and executed within Stoddart's factory in Karawatha, Brisbane. The design work was completed wholly on CAD and Solidworks to ensure each panel fitted exactly into the patter and alongside adjacent panels. The Brisbane facility completed all aspects on the manufacture.

The external facade from Clarence Street to Wynyard Station was completed using perforated metal panels on the new access area via escalators and elevators down to the station several levels below.

The internal fitout, including the ceilings, walls and bulkheads, were all constructed from perforated stainless steel as well as solid stainless steel panels.

The complicated ceiling pattern proved challenging, but not insurmountable, resulting in a beautiful floating effect beckoning commuters along.

The project signalled the completion of Stage One of a $160 million upgrade to Wynyard Station.

 THE OUTCOME

The Kent Street level incorporates an extraordinary twenty-metre digital media screen which showcases flowing images of time, travel and places from all over Sydney throughout history, providing commuters with a far more entertaining commute than traditional toilet-block-tiled underground tunnels.

For tens of thousands of commuters who daily traverse the tunnel, Wynyard Walk is a time and energy saving alternative to the street level traffic roulette they once faced.

The added bonus is the stunning, aesthetically pleasing surrounds, the shiny panels and beautiful architecture, all of which was made possible by the use of stainless steel.

This article is featured in Australian Stainless Magazine Issue 59 (Winter 2017).

Stainless Steel Shines in Perth's Elizabeth Quay

The successful collaboration of ASSDA members and their expertise in the extensive use of stainless steel has been integral to bringing Perth’s iconic and most complex bridge to life.

The Elizabeth Quay Pedestrian Bridge was constructed by DASSH, a joint venture between Decmil, Structural Systems and Hawkins Civil, and is a key feature of the Elizabeth Quay mixed-use development project core to revitalising Perth’s CBD.

Designed and engineered by Arup, the cable-stayed suspension bridge features a leaning double arch, is 22m high, 5m wide and is suspended over the inlet of the Swan River with a clearance of 5.2m from the water. The 110m long meandering pedestrian and cyclist bridge allows for continuous movement around the Quay, connecting the new promenades, an island and ferry terminal.

Stainless steel reinforcement plays a vital structural role in the bridge, with ASSDA Sponsor Valbruna Australia supplying approximately 89 tonnes of 2304 grade Reval® in 12, 20, 25 and 32mm reinforcement bar for the three concrete river piers. The reinforcement bar diameters originally specified were not available locally and so the design was modified to accommodate what was ex-stock in Australia to minimise construction downtime.

Installed exclusively in the splash zones of the concrete piers, stainless steel reinforcement was specified to resist corrosion attack and prevent concrete spalling. In addition, the overall mass of the concrete piers had to be minimised in order to support and achieve the sleek, sinuous design of the almost 200 tonne arches.

Reduction in concrete mass decreases the overall protection of the installed reinforcement bar, resulting in stainless steel as the material of choice to achieve the slimmer river piers and meet the demands of the architectural design.

During the grade selection process, grade 2304 lean duplex stainless steel was also deemed the most cost effective option to reduce ongoing maintenance costs and deliver the expected 100-year service life of the structure.

Visually, stainless steel is also featured in the key design elements of the bridge, including the handrails, balustrades, support posts, mesh barriers, kerbing, fascia panels and kick rail stations. Local jarrah timber decking and decorative feature lighting was used to complete the durable and low-maintenance walk and cycle way.

ASSDA Member Stirlings Australia supplied over 60 tonnes of stainless steel for the bridge project, including 111 wire mesh panels, over 300m of 50.8mm x 3mm round tube in a 320 grit finish to support the mesh panels, welded pipe for the handrails and balustrades, and 2205 and 316/316L grade plate in 6mm and 10mm. An additional 52 tonnes of 316/316L and 8 tonnes of 2205 grade stainless steel plate was supplied and laser cut in-house by Stirlings Australia using their 6000mm x 2000mm laser cutting machine for large-format materials.

Furthermore, Stirlings Australia supplied 7 tonnes of stainless steel channel and angle bar for the architectural elements and structural sections of the quay’s new ferry terminal.

ASSDA Sponsor Vulcan Stainless also supplied the project with over 50 tonnes of laser cut 2205, 316 and 316L grade stainless steel. Polished 2205 grade 3mm stainless steel plate was supplied via its Sydney service centre, cutting approximately 10 tonnes of coil to length, which was then laser cut to size and polished to the specified No. 4 finish prior to delivery. Upright and support pieces for the balustrading were also laser cut and supplied from Vulcan Stainless’ Sydney and Perth service centres using 316 grade 12mm and 316L grade 16mm stainless steel plate.

The 25mm thick pieces were cut using Vulcan Stainless’ in-house 8kw Trumpf Laser, the only machine in Western Australia able to laser cut at this thickness including holes.

Both Stirlings Australia and Vulcan Stainless also supplied laser cut 316/316L grade stainless steel plate for the planter beds that formed part of the landscaping around the Elizabeth Quay precinct.

ASSDA Member Unifab Welding was contracted to fabricate and install over 60 tonnes of stainless steel for the visual elements of the pedestrian bridge as supplied by Stirlings Australia and Vulcan Stainless.

Over 60 different individual balustrade sections each at 1800mm tall were fabricated to allow for the shape and movement of the bridge. Manufactured in compliance with AS/NZS 3992 and ASME 9, Unifab Welding used gas manual arc welding (GMAW) and gas tungsten arc welding (GTAW) techniques to fabricate the various sections.

To meet strict deadlines, all kerbing pieces were welded together using 8mm stainless steel flat bar to replicate the originally specified 300x100x8mm rectangular hollow sections (RHS), a product that was not locally available off-the-shelf. The kerbing pieces were also polished back to a 320 grit and No. 4 finish.

Aside from the wire mesh, all stainless steel components for the bridge were polished to Ra<0.5 and then electropolished prior to installation to provide maximum corrosion resistance in the salt-water environment.

A key architectural feature of Elizabeth Quay, the pedestrian footbridge was opened to the public in January 2016. It exudes in quality, aesthetic appeal and durability with its extensive use of stainless steel, and is certain to provide the structural and material performance required to stand the test of time.

Offering 360-degree views, the bridge is an exciting addition to Perth’s CBD and provides increased opportunity for locals and tourists to interact with the Swan River and reinvigorated waterfront destination.

This article in Australian Stainless Magazine Issue 58 (Summer 2016/17).

Innovative Urban Design

Stunning stainless steel creations by ASSDA Member Draffin Street Furniture have delivered the contemporary edge required by the rising urban metropolis of Ringwood, Victoria.

Working in collaboration with a team of urban architects and designers, Draffin Street Furniture crafted a suite of custom urban street furniture for the Eastland Shopping Centre in Ringwood.

The Eastland Shopping Centre is located within a major transport network and services a large area of Melbourne’s eastern growth corridor. The integration of sustainable development within Ringwood is creating a sought after urban destination with a contemporary lifestyle. As such, its development is a consciously considered endeavour that is geared to meet the specific needs of its growing population.

Funded by Maroondah City Council, landscape architectural firm Urban Initiatives (UI) was commissioned to generate a design vocabulary that would establish a consistent suite of street furniture and treatments that relate to the proposed scale and vision for Ringwood. UI approached industrial furniture designer Andrew Gibbs to design a distinctive suite of street furniture and urban infrastructure that would meet his vision.

Australian Native Landscapes (ANL) who was commissioned by UI to construct the project, including acquiring and installing the furniture elements for the Ringwood development, contacted Draffin Street Furniture to bring Andrew’s design concepts to life.

Draffin Street Furniture worked in collaboration with Andrew to develop his unique furniture designs and generate physical manifestations that met the design brief. Draffin was able to produce an amazing result within a difficult timeframe, constructing an innovative and unique collection of urban infrastructure from his very complex and technical designs.

Comprised of a series of seat benches, both backed and backless, bicycle racks, tree surrounds and waste receptacle surrounds, the Ringwood furniture suite is constructed primarily of grade 316 stainless steel.

Using stainless steel plate ranging from 3mm to 6mm thick and 100x10mm flat bar supplied by ASSDA Sponsors Dalsteel Metals and Outokumpu, Draffin Street Furniture fabricated the custom-made furniture suite and performed the mechanical finishing in-house to Ra<0.5. The furniture was further pickled, passivated and electropolished by ASSDA Member MME Surface Finishing to ensure maximum protection against corrosion in a dense metropolis area.

Draffin Street Furniture’s Director Ian Draffin said the vast majority of street furniture and other public urban infrastructure going into the Melbourne CBD area is now trending towards stainless steel as a default specification. While there is a high capital cost initially, the benefits of using stainless steel is unmatched in its material performance and reduction in ongoing maintenance and life-cycle costs.

Ensuring sleek, modern aesthetics as well as durability, the choice of stainless steel ensures innovative urban infrastructure will remain functional and attractive for years to come.

This is an abridged version of a story that first appeared in Outdoor Design Source and later featured in Australian Stainless Magazine Issue 58 (Summer 2016/17).

 

Stylish Lines

Stainless steel continues to deliver a strong and enduring reputation for visual appeal and structural performance in commercial applications.

Perth’s Cockburn Health and Community Facility features over 300m of internal and external stainless steel handrails and balustrades fabricated and installed by ASSDA Member and Accredited Fabricator, Balustrading WA.

The extensive use of stainless steel in the integrated medical and health centre complements the state-of-the-art building and quality services offered to the local community.

ASSDA Sponsors Austral Wright Metals and Vulcan Stainless supplied grade 316 stainlesss steel throughout including for the main vertical balusters, which measure 10mm thick, and are 150mm wide at the bottom tapering to 100mm wide at the top. Stainless steel brackets were custom made to support the balustrades and stainless steel spider fittings were bolted to carry the 13.5mm glass sheets. The handrails were manufactured from 50mm diameter stainless steel round tube.

All stainless steel components were specified with a 320 grit satin finish, and passivated by Balustrading WA prior to installation for maximum corrosion resistance.

The bespoke stainless steel balustrade and glass design offers stylish lines, spaciousness and unobtrusive views both in the facility’s internal voids and on the external balconies.

Stainless steel was specified not just for its aesthetic appeal, but also for its corrosion resistant properties. The facility’s exposure to a salt air environment being located less than 10km from the Western Australian coastline makes stainless steel the material of choice to resist tea staining and provide long-term durability and performance, particularly for the external applications.

Minimal maintenance is required, with a monthly wash down using soap or a mild detergent recommended to remove any deposits that can contribute to surface discolouration and ultimately corrosion.

Offering maximum durability, safety protection, visual appeal and style, the stainless steel architectural features of the Cockburn Health and Community Facility showcase an impressive everyday application of the material.

This article featured in Australian Stainless Magazine Issue 58 (Summer 2016/17).

 

Stainless Steel Supports Innovative and Engaging New Face for the Australian Museum

The Australian Museum's 2015 facelift saw its new entrance made with a contemporary glass curtain wall feature supported by stainless steel.

The design brief for the architecturally stunning entrance hall feature was a structure that conveyed the image of a modern and transparent institution. Designers Neeson Murcutt Architects and Joseph Grech Architects drew inspiration from the museum’s collection of gemstones for the new façade, resulting in a double-glazed window set against coloured glass panes.

ASSDA Member SGM Fabrication & Construction fabricated the stainless steel frames to support the glass facade as part of the museum’s redevelopment plan. This transformation saw Australia’s oldest museum swing the orientation of its entrance from College Street to William Street.

Fifteen stainless steel framed glass panels stand 8.5m high by 1.6m wide to form a dramatic vertically pleated structure that runs parallel to and complements the existing sandstone wall. Behind the glass façade are 48 diamond-shaped coloured glass panes positioned to take advantage of the northern sun, diffusing and refracting the light to create a welcoming ambience into the museum.

Around 30 tonnes of specialty glass was imported from Luxembourg for the façade. Seven tonnes of 316L stainless steel was used for the frames, including rectangular hollow sections (RHS) supplied by ASSDA Sponsor Midway Metals and 8mm plate supplied and laser cut by ASSDA Sponsor Vulcan Stainless.

SGM Fabrication & Construction’s Managing Director Scott McHugh said welding the stainless steel frames was challenging due to the length and material, and all stainless steel plate had to be individually laser cut by Vulcan Stainless prior to being pressed. ‘Straightness was a big consideration due to the frames holding 30mm thick glass in place. The frames had to be straight and true to within 3mm over the entire length (0.4% tolerance) to support the double-glazed glass.’

The stainless steel frames were pickled and passivated by ASSDA Member Australian Pickling & Passivation Service (APAPS) to remove any heat-affected areas from the laser cuttings and to ensure there was no iron contamination from the pressing.

The frames were specified in stainless steel for its strength, visual appeal and similarity of low maintenance regimes with glass. It was installed by Kane Constructions and the entrance hall was officially opened in September 2015.

The museum’s grand entrance feature is a modern addition to the historically and culturally significant building, certain to maintain its visual appeal for decades to come.

This article is featured in Australian Stainless Issue 57 (Spring 2016).

Images courtesy of Kane Constructions.

Impressive Stainless Steel Ribbon Graces New Brisbane Food Gallery

Stainless steel has brought life to a unique food precinct located in a recently opened premium office tower in Brisbane City's Golden Triangle.

Developed and constructed by Grocon, 480 Queen Street’s sustainable and eclectic design boasts a 6 Star Green Star and a 5 Star NABERS rating. The building’s food gallery, otherwise known as Room 480, is located on level 2 and capitalises on the stunning views of Brisbane River and Story Bridge to deliver a restaurant style experience and retreat for diners.

Complementing this space is a suspended stainless steel sculpture, designed by local architecture and interior design practice Arkhefield. Inspired by water flowing around rocks, the ‘stainless steel ribbon’ delicately hangs from the ceiling and weaves over the landscape of the room.

Grade 304 stainless steel was specified for the ribbon feature, using 100m of 0.9 x 600mm coil supplied by ASSDA Sponsor Dalsteel Metals. The 1 tonne of coil was supplied in a Bright Annealed (BA) finish and polyethylene coating on both sides for protection, with one side brighter than the other to fulfill the architectural effect and design requirements.

Arkhefield wanted the ribbon feature to be highly reflective on one side, with a brushed appearance on the other. As it curves and wraps through the space, the bright and flat sides of the stainless steel ribbon interact to reflect the surrounding colours and light, allowing movement and distortion throughout. Stainless steel proved the only material able to achieve this aesthetically appealing finish, whilst providing a high-quality, durable and lightweight structure.

The stainless steel ribbon spans 35m x 6m across Room 480’s ceiling and was installed by ASSDA Member and Accredited Fabricator Stainless Aesthetics.

Stainless Aesthetics Director Mike Mooney said the installation of the entire 1 tonne of stainless steel coil as a continuous ribbon was one of the more challenging aspects of the project. This was successfully achieved using their custom designed and fabricated turntable, which housed the coil and allowed it to unwind safely 3.5m above floor level, while protecting the ribbon’s surface finish.

The installation of the stainless steel ribbon around the light fixtures emphasised the visual appeal of the sculpture and its surface qualities. It is suspended using 3.2mm wire support cables and fixings in grade 316 stainless steel supplied by ASSDA Member Anzor Fasteners.

The stainless steel ribbon is an impressive and visually dynamic integrated element of Room 480, adding colour and movement to a traditionally formal space. In addition, the sculpture provides a level of intimacy to the space that could not be achieved with a standard flat suspended ceiling, providing a pleasant ambience for patrons to dine and relax.

This article is featured in Australian Stainless Issue 57 (Spring 2016).

Images courtesy of Stainless Aesthetics.

Stainless Steel Design Innovation

Brisbane’s iconic Story Bridge is sporting increased safety measures with the application of innovative stainless steel products and laser-fusion technology.

 The 76-year old heritage-listed cantilever bridge now incorporates three-metre tall, stainless steel safety barriers on its pedestrian walkways, as a result of an outstanding collaboration between multiple project stakeholders. Completed in December 2015, the $8.4 million project was led by design and construct head contractor, Freyssinet.

The design brief was to develop an anti-climb structure that was both functional and aesthetically appealing, whilst ensuring the heritage values of the bridge were maintained.

This presented a number of engineering challenges, including the affixation of the barrier structure to the existing heritage-listed bridge without permanent methods of attachment, such as welding or other damaging techniques, whilst addressing the weight and wind load tolerances, ambient vibrations and noise potential.

Visually, there was also a key design requirement to ensure pedestrian views of the river, Brisbane city and surrounds, and of the Story Bridge itself, was preserved.

The initial reference design was specified in stainless steel (with an option for painted carbon steel) and required the fabrication of heavy box sections for over 1000 posts to support a tamper-resistant, horizontal balustrade cable system. The outrigging was specified in carbon steel, with isolation joints to support the upright posts. However, aesthetically, this design created a clutter of vertical elements.

Freyssinet developed an alternative design concept employing Carl Stahl X-TEND® stainless steel mesh, and engaged ASSDA Member Ronstan Tensile Architecture to assist in the design rationalisation. Ronstan Tensile Architecture conducted form-finding analysis to mimic increasing the mesh self-span between the posts. The findings resulted in a substantial reduction in the number of posts required and a more secure fall-restraint system than initially designed.

Replacing the original tension wire design with a mesh barrier significantly reduced the structural loading on the posts, allowing for a smaller number of lighter duty posts, and reducing the cost below the initial estimate.

The concept solution delivered was a dynamic structural design that met the exacting demands of the specification. The design evolved to using laser-fused stainless steel open section beams for the posts, positioned approximately three metres apart with a blackened Carl Stahl X-TEND® stainless steel mesh barrier.

This project is the largest to date in Australia using laser-fused stainless steel structural beams.

Low impact laser-fusion is a process that allows the welding together of pre-polished flat components to a special profile without damaging the visible surface. It provides an effective and economical alternative to extrusions or conventional welds, providing closer tolerances, superior joint integrity and more consistent finishes.

The introduction of laser-fused stainless steel structural beams into the Australian market allowed Freyssinet the flexibility to plan and design with stainless steel in an outcome that was unrivalled for the project scope. Developed and manufactured by Montanstahl (Switzerland) and its subsidiary Stainless Structurals Asia (Singapore), the laser-fused stainless steel structural beams were supplied by ASSDA Sponsor Atlas Steels, as the exclusive agent for the product in Australia.

To this end, Atlas Steels supplied over 30 tonnes of stainless steel for the project, including 316L grade 80x80x6mm I-beam sections for the 530 upright posts, 316 grade 65x65x6mm angle bars for the outrigging, and 316 grade 38.1x1.6mm 320 grit polished tube for the framing of the mesh.
The I-beams supplied were made from a pre-polished strip with a <0.5Ra finish. The I-beam components were laser cut, polished, and then laser-fused together.

Freyssinet rolled the I-beams using a local roll forming company in Eagle Farm to form a curve, following several prototypes to achieve the required design. The beams were then delivered to ASSDA Accredited Fabricator Stainless Engineering Services to cut the posts to the specified height, verify the dimensions, placement and drilling of the holes for the bolt connections, and passivate the posts to ASTM 380 prior to installation.

Stainless Engineering Services also used the offcuts from the I-beams to fabricate the brackets, ensuring no material wastage.

ASSDA Member Anzor Fasteners supplied 550 units of grade 316 stainless steel coupling cables in various lengths of up to 2.1 metres, in 4mm diameter and 1/19 configuration. Each cable was swaged to a threaded stud on one end and a u-shaped fork coupling on the other end. The coupling cables were used to affix the X-TEND mesh to the posts, providing an adjustable method of attachment.

Following the erection of the posts, Ronstan Tensile Architecture supplied and installed 3400m2 of Carl Stahl X-TEND® 316 grade stainless steel mesh constructed from coloured stainless steel wire rope. The stainless steel was blackened with an additional polyester amino resin, which was hardened to the wire under temperature.

The blackened Carl Stahl X-TEND® mesh was the key to achieving an unobtrusive composition and historical aesthetic, while providing the flexibility and tensile strength required for the structure’s design and use of the laser-fused posts.

The structure is a pivotal safety addition to the Story Bridge and exudes functionality in its excellent and unique engineered design. Stainless steel is unmatched in the materials selection for providing durability, structural performance, low maintenance, corrosion resistance and aesthetics.

This article is featured in Australian Stainless Issue 56 (Winter 2016).

Photography by Fullframe Photographics.

Stainless in Color

A modern and innovative design using coloured and textured stainless steel has left an impressive statement on an Adelaide streetscape.

South Australia’s premier shopping district Rundle Mall underwent a full makeover from 2012-2014 as part of the Adelaide City Council’s initiative to revitalise the precinct.

Part of this redevelopment included a redesign of the facade of a commercial tower at 80 Grenfell Street, housing the Adelaide headquarters of the Bendigo and Adelaide Bank.

Design practice HASSELL delivered an iridescent façade design using coloured stainless steel cladding, supplied by ASSDA Member Steel Color Australia. The extent of the façade referred to as ‘the ribbon’ cascades over 10 storeys, connecting the office tower to the lobby entrance via the retail parapet. The ribbon was made up of over 100 panels that twist and bend over the full height of the building, creating an artistic ripple effect.

HASSELL and Arup’s façade engineering team tested this unique design with physical and virtual models, further refining the design detailing with extensive prototyping. This collaboration with the assistance of Steel Color Australia’s product and material knowledge ensured this remarkable design element was feasible.

Stainless steel was specified for this design as its inherent properties allowed for the level of manipulation required to construct the architect’s creative expression, as well as provide a high quality and aesthetically pleasing finish.

Over 1500m2 of grade 304 stainless steel in 4000x1250x1.2mm sheet in a Rosso colour (Italian for red) was supplied by Steel Color Australia, as the sole distributor in Australia and New Zealand for embossed, coloured, mirror finished and textured stainless steel manufactured by Steel Color S.p.a in Italy.

Steel Colour Australia owner Vince Araullo said that electro-colouring (INCO system) is the main technology in Steel Color Australia’s production. ‘The stainless steel sheet’s surface was directly altered, chemically stimulating the natural passivation of the material. No painting was involved in the process, increasing the pitting resistance of the stainless steel.’

In terms of manipulating the steel’s shape, Araullo said that colouring is an intrinsic part of the stainless steel. ‘This means the stainless does not lose colour during shaping, as opposed to aluminium for example which would need to be coloured after folding due to the fragility of the coloured anodic coating.’

Steel Color Australia facilitated the overseas production of some 270 sheets, weighing 10 tonnes and their shipment to the project site. Modular framework was constructed to bend the stainless sheets into shape for easy installation on site by crane.

The visually striking building façade integrates impressively into the Rundle Place precinct, and the outcome has resulted in a virtually maintenance-free and colour enduring structure.

This article is featured in Australian Stainless Issue 56 (Winter 2016).

Images courtesy of Steel Color Australia.

A Walk to Remember

The spirit of the Anzacs is evoked in a new architecturally stunning, stainless steel walkway that unfolds around Newcastle’s cliffs and links Strzelecki Lookout to Bar Beach.

 The much-anticipated Newcastle Memorial Walk opened on 24 April 2015 on the eve of the Anzac centenary, and features spectacular 360-degree views of Newcastle city and coastline.

The 450m raised walkway forms part of Newcastle City Council’s ‘Bathers Way Project’, a $29 million foreshore development and revitalisation program to link Merewether Beach with Nobby Beach via a coastal walk. The total cost of the walkway was $4.5 million, $3 million of which was contributed by BHP Billiton to mark their 100-year anniversary since the commencement of steel making in the Hunter region.

In commemoration of the Anzacs the walkway features silhouettes of soldiers, laser cut from 10mm thick weathering steel, specified to withstand the coastal wind load. These silhouettes are engraved with 3,860 family names of almost 11,000 known Hunter Valley men and women who served in the Australian Imperial Force, Royal Australian Navy, Australian Army Nursing Service and British and Commonwealth forces during World War 1 from 1914-1918.

EJE Architecture carried out the detailed design work, and lead architect Barney Collins said the historical significance of the project site inspired the walkway’s sinusoidal design.

“During the design phase, we looked at the history of the site and build location next to Memorial Drive, which was originally constructed in 1922 to pay tribute to the soldiers who fought in World War I,” Collins said.

“The design concept of what is commonly known as ‘the wave effect’ was drawn on the fact that DNA was used to identify the human remains of soldiers, and this process stood as the connection between the soldiers and their families.”

Constructed by Waeger Constructions and engineered by Northrop Engineers, the walkway has a structural design life of 70 years, as required by Newcastle City Council. Grade 316L stainless steel was specified due to its sustainable, corrosion resistance and ductile properties. The cliff top location of the walkway overlooking the Pacific Ocean was also a determining factor given the high wind and salt exposure.

ASSDA Sponsor Atlas Steels supplied 64 tonnes of stainless steel for the walkway including DN150 x 10.7mm, DN125 x 6.5mm, and DN65 x 5.1mm wall pipe; 200mm x 100mm x 6mm rectangular hollow sections and 100mm x 100mm x 5mm square hollow sections for the bridge section frames; and 16mm diameter round bar and 50 x 2mm and 50 x 3mm round tube for the handrails and balustrades.

Good scheduling and planning ensured on-time delivery of the stainless steel over a period of 14 weeks, which was sourced from three overseas mills. Positive material identification (PMI) testing was performed by the mills on all stainless steel supplied to ensure the specified grade of 316L was delivered.

Fabricated and installed by ASSDA Member and Accredited Fabricator SGM Construction & Fabrication, the 160m of stainless steel bridge sections consist of eight, 20m single spans (four under trusses and four over trusses) each weighing 6.5 tonnes. The frame of each section is fabricated from 12 square hollow sections welded to two rectangular hollow   sections, and the walking surface is laid over the frame. On either side of the truss, the wave-like effect was created by bending and rolling wall pipe to sweep above the frame for the over trusses and below the frame for the under trusses.

Seven Y-shaped precast concrete pylons up to 8.8m high and 3.4m wide, and two abutments, support the bridge sections of the walkway that reach up to 9m above the ground.

The decking of the walkway was laid with fibre-reinforced plastic, and being a non-structural component, was specified with a 44-year design life. The safety aspects of the bridge are completed with hand railings, which are welded on to the bridge trusses inside the curved pipe sections.

Over 760m of handrails and 600m of vertical balustrades cover the length of the bridge, specified with a maximum Ra value of 0.5. ASSDA Member Australian Pickling & Passivation Service was contracted to electropolish the balustrades and pickle and passivate the completed bridge sections. A purpose-built electropolishing unit, consisting of six baths, was set up to handle and achieve the specified finish of the 1.5m high x 6m long balustrade panels each weighing 180kg.

With an allotted fabrication period of only four months, SGM Fabrication & Construction manufactured the bridge sections using its 2000m2 workshop to full capacity to meet the critical deadline for Anzac Day.

As the walkway runs parallel to Memorial Drive, the main thoroughfare from King Edward Park to Merewether Beach, the erection of the pylons and installation of the bridge sections took place only during a 10-hour window over two nights to avoid prolonged temporary road closures.

Coastal undermining was a challenge for the structural engineers, however good design and construction ensured environmental protection of the sensitive coastal site to minimise erosion.

Mr Collins said the key to the project’s cost control and overall success was the engagement of local contractors.

“The direct involvement of each contractor’s Directors ensured seamless communication and full control of each project phase. The walkway is already an icon for Newcastle, and everyone who has worked on the project is thrilled over its success,” Collins said.

More than two million people visit Newcastle’s beaches every year, and the Newcastle Memorial Walk is already one of Australia’s most remarkable coastal walkways and a significant World War I tribute.

  

This article is featured in Australian Stainless Issue 55 (Winter 2015).

Images courtesy of Bryce Thomas.

Riverwalk Reborn

Brisbane's New Farm Riverwalk is one of the city's beloved icons. Originally constructed in 2003, the Riverwalk was used daily by over 3000 cyclists, pedestrians and runners before it was washed away during the 2011 floods.

After a construction period of nearly 18 months, Brisbane City Council’s re-imagined New Farm Riverwalk has now opened to the public, connecting New Farm to the Brisbane City via the Howard Smith Wharf Precinct.

Engineered by Arup, the Riverwalk has a design life of 100 years and sits 3.4m above mean sea level on robust piles.

Critical to its design and life expectancy is the extensive use of stainless steel for both structural and aesthetic purposes.

Brisbane City Council’s two key objectives of the project were to achieve a low maintenance, durable structure while achieving high aesthetic qualities. Stainless steel was deemed suitable to achieve both objectives while also providing the necessary strength required.

Key design elements featuring stainless steel include balustrades, skate stops, help point enclosures, light posts, signage, electrical enclosures, deck furniture and bins at the node structures. For additional durability, stainless steel reinforcement conforming to BS10088 and BS 6744:2001 was used in the soffit of the precast concrete girders where the structure could be subject to wetting and chloride contamination in the future.

Constructed by John Holland, the project involved a high level of collaboration between multiple suppliers and fabricators to meet the exacting demands of the specification.

John Holland Project Engineer Cameron Pahor said one challenge was programming works in accordance with project specifications to reduce contamination between carbon steel and stainless steel, both of which were used within the precast concrete girders incorporated into the Riverwalk.

Modelling of the reinforcing in 3D by Vectors Computer Aided Drafting also meant exact dimensions were ascertained, reducing waste of stainless steel reinforcing.

ASSDA Sponsor Valbruna Australia Pty Ltd’s Queensland construction division was contracted to supply 385 tonnes of stainless steel reinforcing bar, with The Australian Reinforcing Company (ARC) sub-contracted to schedule, cut and bend the rebar in a specifically prepared quarantine location to prevent processing and storage contamination issues.

Valbruna Special Products Manager Scott Ford said the majority of the rebar (in diameters ranging from 12mm to 40mm) was produced to precise precast tolerances predominantly using Reval® special Grade AISI 2304 (1.4362). Grades 2205, 316L and 304L were also used due to the unexpected increase in tonnage required: nearly 40% more than original project calculations was required, making the Riverwalk the largest use of stainless steel rebar in Australia to date.

Mr Ford said stainless steel rebar ensured the Riverwalk met the required 100 years life cycle, while minimising ongoing maintenance costs.

“Using stainless steel rebar ensures that a landmark structure such as the Riverwalk is kept open to the public rather than lengthy maintenance closures due to corrosion issues,” he said.

Down time was also minimised during construction, with Valbruna holding extensive stocks on the floor in both Italy and Australia of stainless Reval® rebar, enabling delivery to site within 48-72 hours of final approval of drawings. Manual templates were produced for many of the bars to ensure the accuracy of the bends and eliminate site down time.

Minimising maintenance for the visual elements of the Riverwalk was also a priority. To this end, ASSDA Sponsor Midway Metals supplied 275 tonnes of grade 316 stainless steel and two tonnes of welding consumables for the construction of around 1900m of balustrading. Midway also supplied 100 litres of Avesta pickling gel that was used to passivate all welds on the balustrades.

Midway Metals Brisbane Branch Manager Sean Lewsam said some of the specified handrail sizes were not available in Australia (e.g. 150x50x6mm rectangular hollow section or RHS) and had to be air freighted in to meet strict deadlines.

Midway supplied the project with 3,522 metres of RHS, 14,500 metres of round bar, 1,924 metres of HRAP (hot rolled, annealed, pickled) flat bar, 1,500 metres of flat bar from their slitting and flat bar machines, and 2,000 metres of mirror tube, storing the material in a dedicated holding area for the duration of the project.

Specific-sized Grade 316 plates were acquired (132 tonnes in total ranging from 10mm to 16mm) to minimise off cuts and wastage during the plasma cutting of stiffener plates, 1500 base plates and 1000 staunchions for the balustrades. Around 26 tonnes of laser cut profile plates ranging from 5mm to 20mm were also supplied.

ASSDA Member Southern Stainless was contracted to fabricate and install three different types of balustrading (solid uprights, mesh wire and glass infill), as well as the other visible stainless steel elements of the project using the stainless steel and welding consumables supplied by Midway Metals.

Southern Stainless General Manager Matthew Brown said all stainless steel components were manually polished to a 600 grit finish prior to assembly and welded in compliance with AS1554.6. After fabrication, the 960 balustrades panels (each weighing between 180 and 220kg) were electropolished in-house to Ra<0.5 and then hand polished with silicone-based polish prior to being wrapped and delivered to site for installation. The end product is both visually appealing and certain to stand the test of time.

Strength testing was undertaken for the balustrade/girder connections to ensure the stainless steel couplers, bolts and ferules (supplied by ASSDA Member Ancon Building Products) would not damage the cast-in items during a flood occurrence.

Riverwalk’s robust design makes it resilient to future flood events. The opening span has been relocated to reduce the likelihood of debris getting caught on the structure, and some elements have been designed to collapse in extreme events (rather than withstand the flood waters), reducing the force on the piles.

With the re-imagined Riverwalk now a fixture on the Brisbane’s riverscape once again, residents and visitors can look forward to enjoying the unique experience that Riverwalk offers well into the future.

This article is featured in Australian Stainless magazine issue 54, Spring 2014.