Logo


Whole of life costing

19 years plus points to stainless

A fresh focus on whole-of-life costing at Gold Coast City Council has led to the specification of stainless steel for long-term structures in the foreshore zone.

The philosophy, which was adopted following the publication of a study by Griffith University and GCCC, is likely to have flow on effects to other councils and government bodies.

GCCC’s co-ordinator of technical governance Paul Conolly said the seed was planted in 1998 when Council’s Technical Services Branch specified stainless steel for a modular toilet structure in a foreshore zone park. The material was deemed at the time to be cost prohibitive on a capital expenditure basis but the process sparked an interest in lifecycle costing.

Mr Conolly said Council’s growing interest in lifecycle costing, combined with an expectation among locals and tourists that public facilities showcase a ‘resort style’ finish, had brought the focus back to stainless steel in recent years. “There has been a clear trend towards lighter, more open structures for public facilities and these lend themselves to steel work,” he said. “A lot of our public facilities are in the foreshore zone and some materials weren’t performing as well as we wanted, so we started to look at corrosion issues and how to best manage this. We started using stainless steel for critical elements, such as joint interfaces for concrete works; bolts, brackets and cleats for boardwalks; and for high use facilities such as rubbish bins.

“Our observations led us to believe that stainless was the way to go in the foreshore zone, but we had no tangible justification which the designers could use to validate the decision for our asset custodians. We needed clear evidence to prove the initial cost of stainless steel was justified over the life of the structures.”

Griffith University scholarship student Jordan Cocks was called on to research the topic in conjunction with industry affiliate GCCC as partial fulfilment of his Bachelor of Civil Engineering.
Mr Cocks investigated multiple structural scenarios from the perspective of what would represent the most cost-effective solution: hot dipped galvanized (HDG) steel, paint systems, duplex systems using both HDG and paint, or stainless steel.

The result was a report containing a design guide, a life cycle cost analysis and a life cycle costing spreadsheet for structures in the foreshore zone. The report indicates stainless steel is a viable option based on cost alone for structures with a design life greater than 19 years. Conversely, the study indicates a HDG coating would theoretically have a life span of 14 years, leaving the exposed steel subject to rapid corrosion unless protected by an increasingly costly maintenance regime.

Mr Conolly said the report had delivered a workable tool enabling designers to input various parameters, such as current prices and design life, producing a guide for selection of the appropriate material or finishes based around optimising whole-of-life costs.

Similar principles were used to shift the specification of a park arbour in Broadbeach towards stainless steel. The material was essential due to the warm, humid environment of the foreshore, regular spraying with water and fertiliser, and the fact that the arbour would have plants growing over it that would take many years to fully establish. The report has now been used to guide material selection for a number of projects, including toilet blocks in Jacobs Well, Miami (pictured) and Burleigh Heads.

“With these projects, we have gone to the asset custodians and our first question was – what is the design life?” Mr Conolly said. “The report has helped reinforce the need for a ‘cradle to grave’ approach to responsible and sustainable asset management encompassing all stakeholders. This includes not just the designer and asset custodian but all the operational and maintenance personnel involved with a structure.

“For stainless steel structures, the asset custodians now recognise that to retain an asset over the long-term and to satisfy the whole of life cost advantage there must be regular wash downs as part of the maintenance program. The higher initial construction costs are offset by the lower cost regular wash downs which form the major component in the new maintenance regimes. The buildings are also being designed to be hosed from ceiling to floor. The overall process has really helped improve the relationship between the asset custodians, designers and maintenance staff.”

Mr Conolly said the report had also been used to promote the use of stainless steel in playground equipment and shade sail structures. “It is just a matter of making that little leap towards recognising the whole-of-life cost and ensuring delivery of a durable product – it’s not rocket science, just common sense when you think about it.”

GCCC is also now favouring ASSDA Accredited Fabricators and looking to ASSDA to provide third party technical expertise or adjudication should conflicts arise relating to material performance. The ASSDA Accreditation Scheme requires fabricators to conform to stringent standards of competence, training and education and encourages a consistently high standard through industry self-regulation.

ASSDA Executive Director Richard Matheson said GCCC’s decision to favour ASSDA Accredited Fabricators and specify stainless steel in the foreshore zone was a welcome one. “I believe we will see this initiative mirrored by other councils and government bodies in the near future,” Mr Matheson said.

“There is no doubt that informed specification and quality fabrication by people who know and understand the material will offer long-term cost savings and extend the life of the product. This is why ASSDA places so much emphasis on education and technical expertise – Councils and other government bodies need to get it right the first time and ensure value for money for their constituents.”

Mr Conolly said for long term structures, stainless steel was becoming the default specification in the foreshore zone and the trend was even moving inland.

“We’re asking the question: what will look and perform best from cradle to grave? It’s making people think differently,” he said.

Download the the final report here (4.6MB) - Whole of Life Cost Comparison and Cost Benefit Analysis for Steel Structures Constructed in the Foreshore Zone.

GCCC close up GCCC close up 2
This article featured in Australian Stainless magazine - Issue 48, Autumn 2011.

Outstanding Design and Specification

Sunshine coast stainless shines 18 months later

An impressive span of stainless steel balustrade at Bulcock Beach, Caloundra on Queensland’s Sunshine Coast is demonstrating that good design and specification achieves stunning results that last the distance.

The $8.5 million Sunshine Coast Council Bulcock Beach redevelopment, which was opened in late 2009, incorporates over 300m of grade 316 stainless steel balustrade.

PLACE Design Group’s project landscape architect and lead consultant Ben Stevens said the balustrade was a collaborative design effort between PLACE Design Group and ASSDA Accredited Fabricator Bell Stainless.

“We wanted a clean, simple design that didn’t detract from the magnificent sweeping views of Pumicestone Passage, and one that stood up to the front-line marine location,” Mr Stevens said. “We worked closely with Bell Stainless to refine the design. They had some great ideas to maximise long term performance of the stainless steel, while reining in expenditure.”

The final design included 100mm x 50mm rectangular hollow sections (RHS) for the main balustrade stanchions. Because RHS and circular hollow sections (CHS) were available pre-polished from ASSDA Sponsor Fagersta Steels, it meant that significant cost savings could be achieved in the fabrication and finishing stages. The use of standard RHS sections instead of plate and flatbar significantly minimised the inclusion of crevices in the detailing.

“Because we managed to achieve the required balustrade budget allowance and satisfy Council about the long-term durability of a stainless steel balustrade system we think an outstanding outcome has been achieved,” Mr Stevens said.

Bell Stainless managing director David Vine said this was a landmark project for the company in many ways. “We saw an opportunity to raise the bar for coastal commercial installations,” he said.

“After exploring the project’s specified finish, we developed a hand-polishing technique that worked extremely well. We’re really pleased with how it’s performing.”

Bulcock Beach, Caloundra

Images courtesy of Chelmstone. Photography by Greg Gardner Photography.

This article featured in Australian Stainless magazine - Issue 48, Autumn 2011.

Australian innovation

Posted 21st April 2010

 

The ridges on the KAG Rail enable Volunteer Marine Rescue crew to  secure a better grip.

Marine applications of stainless steel have traditionally relied on the material’s corrosion resistance and strength. But when it comes to marine rescue vessels, safety is also a top priority.

Southport’s Volunteer Marine Rescue (VMR) is currently trialling an Australian innovation designed to enhance safety.

The Klein Architectural Grip (KAG) Rail, developed by ASSDA Accredited Fabricator Klein Architectural (Slacks Creek, Queensland), has permanent swages and ridges that fit the shape of a closed hand.

The ‘non-slip’ rail was originally designed for the industrial marine sector, where rails and workers’ hands are often wet and greasy, causing slippage on ladders.

In addition to the VMR, the rail is now being trialled on steep ladders at Wivenhoe Dam, Queensland and is suitable for use in a range of industries requiring a high level of safety, including mining, construction, heavy industrial, manufacturing, transport, oil and gas, power stations, and the aged care sector.

VMR Unit Training Co-ordinator Ken Gibbs said two Grade 316 rails were currently installed on their 8 metre Noosa Cat ‘Marine Rescue 2’ and had been tested in all types of weather conditions.

“We’ve got about 30 skippers who work in rotation and the feedback we’re getting is really positive,” Mr Gibbs said.

“The general consensus is that the rail offers superior holding capacity in both wet and dry conditions, without compromising strength.”

Mr Gibbs said during search and rescue operations, the weather was generally foul with water often taken over the bow of the vessel, making the hand rails slippery and testing both skipper and crew.

“Being able to fit our fingers into the ridges gives us a better grip and makes the operation much safer,” he said.

Klein Architectural Director Danny Klein said independent testing had shown the rail reduces handrail slippage by 80 per cent in comparison with regular stainless steel tube.

“The rail can also be fabricated in both left and right hand configurations, which would allow visually impaired people to identify in advance what a staircase is about to do,” Mr Klein said.

The KAG Rail is made to order and is available in a number of different stainless steel grades, depending on the application. The rails can be retro fitted or installed on new projects. Services such as water, electrical, air/gas and data can be hidden in the tube.

A patent is currently pending on the product, which complies with AS1428.1. Mr Klein said the Standard does not currently make particular reference to grip or slip, but the company was lobbying for this to be changed.

CONTACTS

Klein Architectural Pty Ltd
www.klein.net.au

VMR for blog

Workshop

Close up

Stunning stainless

Strength and corrosion resistance vital

As wild fish stocks decline globally, the spotlight is increasingly being shone on humane stun and slaughter methods in the rapidly growing aquaculture industry. Stainless steel components fabricated by Pryde Fabrication (ASSDA Accredited) are an integral part of a Brisbane innovation that is leading the way internationally in a shift towards faster and more humane automated percussive stun methods.

Seafood Innovations International Group Pty Ltd has spent around 10 years developing fish harvest technology which enables fish to swim naturally until the second they are stunned, reducing stress on the fish and improving flesh quality.

They have collaborated extensively during this period with Pryde Fabrication (Cleveland, Queensland) to develop the system, which incorporates a base, ramp and trigger plate made from grade 316 stainless steel.

Up to 400 of the units are being produced each year, of which around 98 per cent are for export.

Pryde Fabrication General Manager Darren Newbegin said Grade 316 stainless steel was chosen for the components primarily due to its corrosion resistance and strength. He said other design and fabrication requirements included:

  • No bacterial traps
  • Robust enough to withstand the harsh environment and repetitive shock loading
  • Light enough to enable easy handling of the modules for cleaning
  • Configured to enable easy dismantling for cleaning

“We never considered any grade other than 316 because of the harsh environment – the majority of the units are exported overseas, where they are being used in minus temperatures, fully immersed in sea water,” he said.

There is about 15kg of stainless steel in each machine, which is laser cut, enabling a high level of accuracy for both cutting and fold marks. The rest of the procedure is performed manually, including welding, polishing and glass bead blasting to provide a pleasing surface appearance.

“Stainless steel is the perfect material to laser because it’s so clean to cut,” Mr Newbegin said.

Seafood Innovations’ Business Manager Noel Carruthers said the development of the system had benefited from choosing a fabricator in the company’s local area, as it enabled a close collaboration.

Mr Newbegin agreed with this sentiment, suggesting it was this relationship between the two companies which had contributed to making the product fit for purpose and tailored to cost and operational efficiency.

“This relationship has allowed Pryde Fabrication to be involved in a solution to world fish farming and we are excited about further growth in this Australian initiative,” he said.

Mr Carruthers said the patented system represented an enormous change to the industry, with a single unit processing 15-20 fish per minute automatically, compared with other processes such as electrocution, carbon dioxide gas, and the use of wooden clubs.

The system works by pumping a current of water, which the fish are naturally inclined to swim towards. They then reach a point where their nose hits a trigger, which releases and immediately retracts a small, blunt-nosed piston at high speed, making the fish irreversibly unconscious. The fish are then turned upside down and enter a bleed machine where they are automatically bled.

In addition to improved flesh quality, the automated system means fewer operator injuries and immediate bleeding, resulting in improved appearance of fillets when fish are processed. The ability to slaughter at the point of capture means fish potentially carrying diseases will not contaminate other waters in transit.

Although originally developed for Atlantic salmon, the system has also been refined to cater for different varieties of fish, including tilapia, pangasius, barramundi, yellowtail kingfish and cobia.

A recent installation on a Marine Harvest vessel in Norway (incorporating three sets of a four channel system) is slaughtering 20,000 fish an hour at 98% efficiency.

The equipment has been independently tested by laboratories in Norway and ongoing developments to the system are tested at Huon Aquaculture in Tasmania.

 

The article featured in Australian Stainless Issue 47 - Spring 2010.