Logo


A Stainless Facelift for Surfers Paradise

Stainless is a key feature in the urban design and revamp of one of the Gold Coast's most iconic and vibrant tourist destinations.

The $25 million Surfers Foreshore Project was commissioned by the Gold Coast City Council (GCCC) to redevelop the beachfront area between Laycock Street and View Avenue in Surfers Paradise.

Aimed at improving infrastructure and visitor recreation, the new promenade features new lifeguard towers, amenity blocks, beach shelters, picnic areas with barbeques, and increased pedestrian and disability access to the beach.

Managing Contractor Abigroup Contractors Pty Ltd appointed ASSDA member and Accredited Fabricator J&T Mechanical Installation to fabricate and install the stainless steel architectural handrails and balustrades across stages 1, 2 and 3.

Trent Todd, J&T Mechanical Installation’s Director, said that with the handrails and balustrades being installed less than 30m from the shoreline, stainless steel was the only choice to withstand the harsh coastal environment to help resist tea staining and ensure long-term durability and performance.

A 2009 GCCC study in affiliation with Griffith University saw the GCCC adopt stainless steel as the default specification for structures with a design life of more than 19 years in foreshore zones.

This followed research results showing the material required lower maintenance and was the most effective in life cycle costs when compared with hot dipped galvanized (HDG) steel, paint systems and duplex systems using both HDG and paint.

At a total cost of approximately $80,000, the stainless steel handrails and balustrades span 1300m across the esplanade that fronts Surfers Paradise Beach.

Grade 316L stainless steel was specified for these elements of the project, which included 36 sheets of 10mm thick plate measuring 1500mm x 3000mm supplied by ASSDA member Allplates. ASSDA Sponsor STM Tube Mills Pty Ltd supplied 1300m of 50.8mm x 1.6mm thick tube. Another 3500m of 1/4” wire was also sourced for the balustrading.

All the flat and tube components including 124 stanchions were laser cut and folded by Allplates.

Stanchions and base plates were machine polished to 600 grit by ASSDA member and Accredited Fabricator Minnis & Samson to give the stainless steel an even polish and the stanchions a square edge. The stanchions were electropolished before being delivered back to J&T Mechanical Installation’s workshop for assembly.

J&T Mechanical Installation fabricated the top (50.8mm x 1.6mm tube) and bottom (folded channel, 4mm thick) rail frames with two vertical 16mm diameter solid round bar intermediate supports. Infill wires at 6.4mm diameter were positioned with swage fittings and lock nuts on each end to construct the vertical balustrades.

On site, J&T Mechanical Installation completed civil works prior to installation, including pre-drilling with the fasteners for the base plates to which the stanchions were then bolted. The rail frames were welded to the stanchions in 2.1m sections.

Following installation, a proprietary stainless steel cleaner was applied to remove any oxides, and a mild cleaner was followed to provide surface protection and inhibit corrosion.

Architectural feature lighting was installed to illuminate the pedestrian walkways at night.

The Surfers Foreshore Project was completed in April 2011 and today continues to thrive as the Gold Coast’s most popular entertainment precinct where city meets the surf.

Images courtesy of Allplates.

This article is featured in Australian Stainless magazine, issue 51.

Guidelines for Use of Stainless Steel in the Ground

Stainless steel can provide excellent service underground. It is stronger than polymers and copper and its resistance to chlorides and acidic acids is significantly better than carbon or galvanised steels.

The performance of stainless steel buried in soil depends on the nature of the buried environment. If the soil has a high resistivity and is well drained, performance can be excellent even in conditions where other unprotected materials suffer degradation.

BASIC RULES

The Nickel Institute guidelines for burial of bare stainless steel in soil require:

  • No stray currents (see below) or anaerobic bacteria
  • pH greater than 4.5
  • Resistivity greater than 2000 ohm.cm.

Additional recommendations include the absence of oxidising manganese or iron ions, avoidance of carbon-containing materials and ensuring a uniform, well drained fill. If the guidelines are breached, then either a higher resistivity is required, i.e. measures to lower moisture or salts and ensure resistivity exceeds 10,000 ohm.cm, or else additional protective measures may be required.
In comparison, the piling specification (AS 2159) guidelines for mild steel require a pH greater than 5 and resistivity greater than 5000 ohm.cm for soils to be non-aggressive. It is rare for bare mild steel to be buried, i.e. typical specifications include a wrap or coating possibly with a cathodic protection system.

SPECIFIC ISSUES

  • Uniform soil packing is required as variable compaction can induce differential aeration effects.
  • Avoid organic materials in the fill around buried stainless steel as they can encourage microbial attack.
  • Avoid carbon-containing ash in contact with metals in soils. Localised galvanic attack of the metal can occur.
  • Oxygen access is critical. Having good drainage and sand backfill provides this. A sand-filled trench dug through clay may become a drain and it is not appropriate. Stainless steels generally retain their passive film provided there is at least a few ppb of oxygen, i.e. 1000 times less than the concentration in water exposed to air.
  • Chlorides are the most frequent cause of problems with stainless steels. In soils, the level of chlorides vary with location, depth and, in areas with rising salinity, with time.  High surface chlorides may also occur with evaporation. This is a problem for all metals although stainless steels are not usually subject to structural failure.

The general guidelines for immersed service are that in neutral environments at ambient temperatures and without crevices, 304/304L may be used up to chloride levels of 200ppm, 316/316L up to about 1000ppm chloride and duplex (2205) up to 3600ppm chloride. The super duplex alloys (PRE>40) and the 6% molybdenum super austenitic stainless steels are resistant to seawater levels of chloride, i.e. approximately 20,000ppm. These guidelines are easy to apply in aqueous solutions.

Soil tests for chlorides may not exactly match actual exposure conditions in the soil. Actual conditions may be more (or less) severe than shown by the tests. The difference is calculable but in practice, the aqueous limits can be used as general guidelines. More specific recommendations, based on published guidelines, are provided in Table 1.

 

 

It may seem redundant to assess both chlorides and resistivity. Both are required as the resistivity is primarily affected by water content and if it is low, then quite high chlorides could be tolerated – as seen by the choice of 304/304L in high chloride/high resistivity conditions.  Despite these recommendations, most Australian practice is to use 316/316L or equivalent, primarily because of variable soils.

  • Good drainage and uniform, clean backfill are essential for bare stainless.
  • Duplex or super duplex could be replaced with appropriate austenitics and 304/304L could be replaced with a lean duplex.
  • Ferritic stainless steels of similar corrosion resistance (usually classified by Pitting Resistance Equivalent [PRE]) could also be used underground.

Potential acid sulphate soils are widespread, particularly in coastal marine areas as described in http://www.derm.qld.gov.au/land/ass/index.html. Once disturbed and drained, which also allows oxygen access, such soils typically become more acidic than pH 4 and will attack metals (although stainless steels will be less readily attacked than other metals). Detailed assessment is required if using metals in such an environment as the effect of other aggressive ions is likely to be more severe at low pH.

  1. Properly specified stainless steel can provide the longest service underground. It is strong compared to plastics and copper, and is more reliably corrosion resistant than carbon steel.
  2. Table 1 guides grade choice for soil conditions.
  3. Normal fabrication practices apply: welds must be pickled and carbon steel contamination avoided.
  4. Pipelines must be buried in clean sand or fine, uniform fill in a self-draining trench that avoids stagnant water. Organic or carbonaceous fill must be avoided.

CASE STUDIES

The Nickel Institute published a five year Japanese study in 1988 (#12005) showing 304 and 316 gave good service in buried soil, although vertically buried pipes did suffer some minor pitting and staining apparently due to differential aeration effects.

  • NI #12005 describes a five year burial exposure in Japan at 25 sites with highly varied corrosivity. After five years in marine sites, horizontal 304 pipes showed no pitting but some crevice attack under vinyl wrap. Only one 316 pipe showed any attack.
  • Vertical 304 pipe suffered attack near the base at some sites apparently due to differential aeration effects.
  • An Idaho study of a 33-year NIST burial found 12% Cr martensitics perforated. The ‘lake sand’ site had high ground water with pH 4.7 at recovery. Sensitised 304 was attacked worse than annealed but both suffered attack along the rolling direction from edges.
  • 316 was not attacked even if sensitised.

As noted, duplex stainless steel of similar corrosion resistance (PRE) to 304 and 316, respectively, would be expected to provide similar results when buried.

On a more practical level, there are several common approaches that are used when burying stainless steel:

  • Wrap the stainless steel pipe in a protective material, such as a petrolatum tape, prior to burial. If the wrapping is effective (typically an overlap no less than 55% of the wrap width is specified), then the nature of the external surface of the buried pipe is of no consequence. In this case, stainless steel is only used for its internal corrosion resistance, i.e. its resistance to corrosion by the fluid which the pipe is carrying. Some authorities prohibit this practice because of concerns that damage to the wrap could cause a perforating pit in severe environments.
  • Ensure that the soil environment surrounding the buried stainless steel is suitable for this application. In this case, the trench is dug so that it is self-draining, without there being areas where stagnant water can accumulate in contact with the buried pipe. The stainless steel pipe is then placed on a sand or crushed aggregate bed and covered by similar material. Under these circumstances,  316 grade stainless steel can be quite a suitable choice. US practice is to use 304 but Australian soils are quite variable and there have been mixed experiences with 304.
  • Above ground sections of pipework are often stainless steel as they are at risk of mechanical damage while underground pipework is polymeric - polyethylene (PE) or fibre reinforced plastic (FRP) - despite the risk of damage due to soil movement.

In all of these cases, the assumption is that the stainless steel has been fabricated to best practice. This includes pickling of welds (or mechanical removal of heat tint and chromium depleted layer followed by passivation to dissolve sulphides) and ensuring that contamination by carbon steel has been prevented. It is also assumed that the buried stainless steel does not have stickers or heavy markings that could cause crevices and lead to attack.

STRAY CURRENTS

All buried metals, including stainless steels, are at risk if there are stray currents from electrically driven transport, incorrectly installed or operated cathodic protection systems, or earthing faults in switchboards. Stray current corrosion can be identified as it causes localised general loss rather than pitting. It is also very rapid.

WHAT TEST METHODS ARE USED?

There are Australian and ASTM standards giving basic measurements of resistivity on site with 4 pin Wenner probes or in a soil box in the laboratory. More detailed checking includes water content, chlorides, organic carbon or Biological Oxygen Demand (BOD), pH and redox (or Oxidation Reduction Potential [ORP]) potential – which assess microbial attack risk but also captures the effect of oxidising ions and dissolved oxygen. Most of these test methods are covered in “Soil Chemical Methods: Australasia” written by George E Rayment and David J Lyons and published by CSIRO.

 

SOIL

Natural soils are a mixture of coarse pebbles, sand of increasing fineness through to silts and clays where the particles are less than 5 µm in diameter.  Some of the particles contain soluble salts that, if mixed with water, are likely to be corrosive. Normally, soils also contain organic material from decaying plants or ash, which can provide nutrients for microbial activity or galvanic effects, respectively.

If water is present in the soil, corrosion can take place. Metals below the water table can corrode (following the rules for immersed service). However if the soil is well compacted so oxygen cannot gain access or corrosion products cannot diffuse away, then corrosion would be stifled - even for carbon steel. Above the water table, moisture comes from percolating rain, which will, over time, leach away soluble corrosives and make the soil less aggressive. This also means that in dry climates, salts may accumulate and when there is rain, the run-off or percolating water is very aggressive.  Deposited salts can also be a problem in marine zones almost regardless of rainfall.

Most of the moisture above the water table is bound to particles but if there is sufficient water content, typically more than about 20%, enough water is free to wet buried metals.

Image pictured is the Appin Sewerage Treatment Plant, NSW. Fabricated and installed by ASSDA member and Accredited Fabricator Roladuct Spiral Tubing Pty Ltd using 316 grade stainless steel. Image courtesy of Roladuct Spiral Tubing Pty Ltd.

This technical article is featured in Australian Stainless magazine, issue 51.

Stainless = Freshness

As bottled water continues to gain popularity in Australia, maintaining the quality and purity of the water extracted from natural springs is paramount.

This is just one example within the food and beverage sector where hygiene is vitally important and, therefore, stainless steel continues to be the material of choice for processing and storage facilities.

In 2011, Coca-Cola Amatil (CCA) commissioned ‘Project Flint’ to upgrade three spring water storage tanks for their Moorabbin plant in Victoria plus an additional two tanks for their Thebarton plant in South Australia.

GEA Process Engineering Australia engaged Byford Equipment on behalf of CCA to fabricate and install the five storage tanks.

GEA Engineering’s General Manager Operations, Andrew Fillery, said stainless steel was an important specification as the tanks had to cope with the chemical and thermal rigours of cleaning processes.

“Stainless steel was chosen for process and hygienic reasons, and the vessels needed to withstand the process and cleaning conditions where mild caustic and acid CIP solutions were used,” said Fillery.

Strength and durability was key for the 200,000L capacity silos, which measured 4.7m in diameter by 14.5m high for the Moorabbin site and 5.5m in diameter by 10m high for the Thebarton plant.

ASSDA Sponsor Midway Metals supplied 27 tonnes of grade 304 stainless steel coil with a 2B finish in 2mm, 2.5mm, 3mm and 4mm thicknesses. The coil widths were 1219mm and 1500mm.

With a team of five fabricators on the project, the tanks were welded together using a semi-automatic MIG welding process. The welds were then pickled to restore the chromium oxide layer and abstain from rusting.

Byford Equipment’s Project Manager Geoff Smallwood said coordinating the delivery of the tanks was a challenge, given the logistics of travelling through three states by road.

The delivery of the vessels was critical added Fillery, as there were specific installation windows to work within.

The storage tanks were delivered from Byford’s workshop in New South Wales to Moorabbin in March 2011. The two remaining tanks were delivered to Thebarton a month later for installation. It took one day and one crane to install each tank on site.

The connecting pipework was positioned on site, which was grade 304 polished tube in diameters ranging from 38mm to 150mm and purge welded prior to installation.

Images courtesy of Byford Equipment.

This article is featured in Australian Stainless magazine, issue 51.

Chimpanzee Sanctuary

Where Strength Meets Style

Innovation in zoo enclosure design is a key feature of the recently completed $7.5 million makeover of the Chimpanzee Sanctuary at Sydney’s Taronga Zoo.

The project brief was to create a chimpanzee habitat akin to their native home that would encourage social interaction and allow the zoo’s primate keepers to manage animal husbandry and the group’s changing demographic. The enclosure’s transparency and the ability to withstand the chimpanzee’s remarkable strength and intelligence were essential.

ASSDA member Ronstan Tensile Architecture was contracted by the builder, the Lipman Group, to be the specialist contractor for the technical design and installation of a mesh enclosure and non-climbable wall. Ronstan’s unique capability in tensile architecture and their technical expertise were a natural fit for this challenging project designed by Jackson Teece Architects.

The Sanctuary features the mesh separation paddock (similar to an aviary), at one end of the main exhibit. A non-climbable wall with a removable curtain, allows both spaces to function as one large paddock. This enables introductions of new chimpanzees into the compound and helps manage the apes’ complex behaviour patterns.

Ronstan Tensile Architecture’s General Manager, Rowan Murray, said the non-climbable wall structure was one of the most the challenging design aspects.

“The architect’s greatest challenge was to separate the chimpanzees physically, but still have them all in view in the paddock. We had to build a wall that was transparent, had openings of no more than 5mm to avoid chimpanzees putting their fingers in and climbing, and could withstand the strength of chimpanzees.” Mr Murray said.

The structural complexity of the non-climbable wall required 3D modelling to analyse design configurations and ensure structural integrity. Test panels of the non-climbable wall were fabricated and assessed in the chimpanzees’ temporary enclosure to determine which would offer the safest containment of the site and minimise visibility.

Mr Murray said the primary structure for the wall consists of a Ronstan supplied tensile cable net that supports semi-transparent perforated stainless steel panels.

“Most materials can be damaged, but the durability of stainless steel panels of certain perforation proved to be the right solution and important in the development of the overall design,” he said.

“The non-climbable wall had been designed with wall panels clamped directly to the enclosure mesh face. In a collaborative effort, we changed this to an independent cable net structure to remove the risk of having the final wall shape differ from that modelled, and in doing so, avoided the risk of panel geometry differing from the complex 10 degree incline necessary for non-climbability. This also ensured uniform set out and fixing methods, more consistent panel shapes and allowed the panel geometry to drive the wall structure rather than this being determined by other elements.”

ASSDA member, Locker Group, supplied the grade 304 stainless steel panels, which were perforated to 50%. A black painted finish was applied before installation.

With stringent performance characteristics to adhere to, including long-term corrosion resistance and aesthetics, Carl Stahl X-Tend stainless steel mesh was specified for the separation enclosure and the removable curtain within the non-climbable wall. The stainless steel mesh was blackened using an electrolytic process to increase transparency of the enclosure.

Trevor Williams, Lead Consultant of Jackson Teece and Project Architect for the development, said materials selection was critical in delivering the aesthetic appeal and longevity of the enclosure.

“We spoke with Ronstan Tensile Architecture for technical design advice in the early stages of the project. There were various other types of meshes that were a possibility but, being a dynamic structure, alternate materials were far too rigid and not as flexible as the Carl Stahl X-Tend stainless steel mesh. I don’t think we could have achieved this outcome with any other mesh,” Mr Williams said.

“The stainless steel will have a longer life in the aggressive south-facing coastal environment. The blackened mesh has a fantastic form and from an architectural point of view, has achieved an organic appearance.”

Ronstan Tensile Architecture’s contribution to the project, including the tensile mesh enclosure and non-climbable wall, cost about $1.2 million and took 16 weeks to construct.

Mr Murray said the stainless steel demonstrates a great mix of strength and transparency, and the end tensile result is very forgiving.

“Achieving the architectural intent involved complex modelling and finite analysis of the mesh form to ensure the surrounding structures could be designed to support the enclosure loads. Ronstan is absolutely rapt with the state-of-the-art structure,” he said.

The paddock was completely re-landscaped and the impressive exhibit also now features several climbing platforms at varying heights of up to 12 metres, and a 180 kilogram hammock for the chimpanzees to enjoy.

The 17 lucky Taronga Zoo chimpanzees moved in to their renovated home in late September 2011.

QUANTITIES AND GRADES OF STAINLESS STEEL USED

›    Mesh enclosure 770m² of 3mm Ø x 60mm blackened stainless steel, grade 316 Carl Stahl X-Tend mesh.
›    Non-climbable wall facade 140m² of grade 304 stainless steel perforated to 50%, with a black painted finish.
›    Cables 1x19 construction 8mm, 12mm and 22mm diameter, grade 316 stainless steel cables. The stainless steel cable end fittings and  components were polished and passivated prior to installation.

Images courtesy of Ronstan Tensile Architecture.

This article features in Australian Stainless magazine - Issue 50, Summer 2011/12.

Helical Coil Gets a U-Neek Bend

Fabricating equipment for the chemical sector requires solid high quality materials and superior workmanship. In April 2011, ASSDA member and Accredited Fabricator U-Neek Bending Co Pty Ltd put the finishing touches on a radiant helical coil at their factory in Dandenong, Victoria.

The coil, designed as a heater for Titanium Tetrachloride (TiCl4) production, is 11.4 metres long with a diameter of 3.05 metres and required more than 7 tonnes of high grade Inconel Alloy.

U-Neek’s Business Development Manager, John Lovell, said the client chose to have this material shipped from America.
“At around US$1000 a metre, Inconel Alloy is a very expensive option but it has great heat transfer properties and is completely non-corrosive,” Mr Lovell said.

The Western Australian client, who declined to be named, were looking for a fabricator that, in addition to having a proven record in metal bending, could work to their particular requirements for this critical process componet.

“U-Neek weren’t just competitive in pricing,” said Greg, a project engineer with the client. “They succeeded with all the trial projects we sent them.”

“To ensure total quality control, we provided a comprehensive report that detailed every step of the process, including the names of every person who worked on the individual stages,” Mr Lovell said.

U-Neek Engineer Dale Theobold said the coil was manufactured to exacting tolerances using a range of Inconel Alloy materials.
“We used 150NB Schedule 40 seamless 600 for the pipes and flanges, 366-04 WPNCI-S for the elbows, B168-08 for the plate and 253MA for the high temperature pieces,” he said.

Once completed, the coil then had to undergo a rigorous series of tests. The butt welds were verified with full radiography, the attachment welds were submitted to liquid penetrant inspection (LPI), and a full hydro exam was done on the coil itself.

“The coil was filled with distilled water to test its heating capabilities. Then the coil was pressurised with nitrogen, to a dew point of -12°, to remove all traces of water and moisture prior to transporting,” Mr Lovell said.

The transport frame and mounting jigs were manufactured from mild steel. To ensure no cross contamination, Inconel strips were fitted to the mounting points. The coil was lifted onto the back of a semi-trailer for final transportation to Perth, using U-Neek’s 16 tonne travelling overhead cranes.

Images courtesy of U-Neek Bending Co Pty Ltd.

This article features in Australian Stainless magazine - Issue 50, Summer 2011/12.

The Sustainable Score Card for Stainless Steel

The greatest challenge we face is the control of our own success. With 7 billion people on earth, all with an insatiable appetite for a high standard of living, the newest dimension of materials competition is sustainability.

Sustainability is development that meets the needs of the present without compromising the ability of future generations to meet their own needs (UN World Commission on Environment and Development, 1987). In real terms, that means making choices that do minimum damage to our environment, but support a high level of human development.

The built environment is an excellent place to start. Buildings last for a long time, locking up the energy used in making their materials, requiring maintenance and consuming the energy used for heating and air-conditioning. They consume a large proportion of our resources. The choice of materials affects all 3 aspects of consumption, and, a number of building evaluation systems have been created around the world to assist in rating buildings for sustainability. Materials are scored for their energy content reuse during major refurbishment, waste management, recycled content and contribution to the overall design and running costs.

The Green Building Council of Australia rates green buildings for sustainability. The pace of registration and certification is increasing. Of the 368 certified projects, 96 were certified in the last 12 months. The push towards sustainable development in the building sector is strong and accelerating. City of Melbourne’s Council House 2 (CH2) is Australia’s first Green Star rated building to be awarded 6 Stars, which carries an international leadership status. Stainless steel was used to support screening walls of living green plants that shade the building and, required no maintenance or painting, working with the environment to keep good working conditions. Such membranes, containing plants or actively or passively screening the sun, allow the use of a smaller capacity air-conditioning plant, with lower capital costs and ongoing running costs and energy demand.

The only Gold LEED® (Leadership in Energy and Environmental Design) certified meeting venue in the world is the Pittsburgh Convention Centre in the United States. Its grade 316 stainless steel roof is used to harvest rainwater, reducing water demand on the city system - another example of the special properties of stainless steel.

Stainless steel roofing and rainwater goods give extremely low levels of run-off. See Table 1. But this is not the only reason to use stainless steel in the built environment. It contributes to sustainability because of its long service life, excellent corrosion resistance, clean and unchanging appearance and its exceptional hygiene characteristics. Stainless steel is reusable, entirely recyclable, and probably the most recycled product in the world. On top of that, it needs very little cleaning or short or long term maintenance, and makes no contribution to indoor pollution as materials emitting volatile organic compounds (VOCs) do.

There is considerable history and experience of stainless steel service life in the built environment. The Chrysler Building (1930) and Empire State Building (1931) in New York demonstrate the material’s durability, excellent appearance and resistance to corrosion. This extraordinary functionality has been played out many times with a number of examples here in Australia, including the Fujitsu Building in Brisbane, which is clad with 445M2 ferritic stainless steel. Located in a marine industrial environment, this building looks as good as it did on completion in 2002. The long life of stainless steel in these atmospheric applications shows its very high corrosion resistance. The corrosion rate of grade 316 for instance in most atmospheres is is more than 5000 times slower than the rate of carbon steel. See Figure 1 (below).

There is a considerable industry devoted to the collection and recycling of stainless steel products at the end of their life and, scrap is the standard feedstock for making stainless steel. In any stainless steel object, there is an average of 60% recycled content. New production would virtually all be made from recycled stainless steel if it were available, but the growth in the use of stainless steel and its long life in service limit the supply. Table 2 compares the recycled content and end of life capture rate of the industrial metals, and demonstrates that stainless steel is the most recycled industrial metal.

Sustainability is about much more than recycling. The energy used to make the material has a direct impact on sustainability, and all metals are energy intensive. Energy is a scarce resource, generates greenhouse gases and creates specific demands on land use likely to impact on future generations. Longevity and extraordinary recyclability will not be helpful if stainless steels’ energy consumption is much higher than other materials. Figure 2 describes the embodied energy in terms of CO2 equivalent for some of the industrial metals, and shows that stainless has a comparatively high level of embodied energy. In kilogram of CO2 per kilogram of metal, the austenitic grades are over double the footprint of carbon steel, although the ferritic grades are a little less. The footprint of stainless steel is caused by the production of alloying elements nickel and chromium, which are needed to give stainless steel its special properties, including extremely long life. Even so, efforts are ongoing in the stainless steel industry to reduce the energy content.

But in the real world, kilogram CO2  per kilogram metal comparisons are misleading. Take a typical application; a box gutter on a building. The metals have different strength, so are used with different thickness. Stainless steel gives a relatively light weight gutter (see Table 3), and hence the lowest footprint as installed. Coupled with its extended durability without maintenance, stainless comes out as the most sustainable option. Painted galvanised or Zincalume® coated carbon steel has not been included in the table as the calculation of the contributions of the components were too complex, but these materials are highly unlikely to beat the sustainability of stainless steel, even as-installed, and they have a much shorter life.

In summary, stainless steel has excellent recyclability, energy content as-installed (at least as good as other metals), extraordinary longevity and next to no need for maintenance, ever. Add to that the benefits of their special properties, which allow for the construction and operation of buildings at a lower cost. The contribution of stainless steel to sustainability is obvious and considerable.

This article was prepared by ASSDA Technical Committee member, Alex Gouch from Austral Wright Metals.

This technical article is featured in Australian Stainless magazine - Issue 50, Summer 2011/12.

Reflected Glory

Stainless steel’s star has ascended in the public’s conscience as thousands of Westfield Sydney shoppers enjoy the world-class design and materials on show in its newest retail development.

Covering 103,000m2, the $1.2 billion Westfield Sydney development is bound by the Pitt Street Mall and Market and Castlereagh Streets in the heart of Sydney’s CBD. It integrates Westfield Centrepoint, the Centrepoint Convention Centre, Imperial Arcade and Skygarden, plus a new office tower at 85 Castlereagh Street and an extensively modified and refurbished tower at 100 Market Street.

While the size of the project is enormous, it’s the design that’s turning heads. With a nod to lauded international developments in Paris and Frankfurt, the architects of Westfield Sydney have created a stunning environment that makes extensive use of mirror and hairline finished stainless steel in the interior spaces.

Stainless steel was chosen by Westfield’s architects to create a very upmarket, stylish environment for shoppers. In addition to meeting the design intent, stainless steel also offers durability and ease-of-use during construction.

ASSDA Accredited Townsend Group was chosen to design, fabricate and install stainless steel elements throughout the complex, a task it was confident to undertake due to its experience delivering exceptional quality products to exacting clients, such as Apple Inc.

Townsend was awarded the following elements using only 316 grade stainless steel:

›    8,500m2 of mirror-finished stainless steel troughs and particle board infills in the feature ceilings on levels 3 and 4
›    Composite stainless steel panel cladding of the escalators on all levels
›    Black glass and mirror-finished stainless steel on the escalator soffits in void 4
›    Hairline-finished stainless steel composite panel cladding in voids 1 to 10
›    Mirror-finished stainless steel cladding of the elliptical column in void 1 from levels 1 to 5.

The project’s innovative design and engineering required the use of Townsend’s Vee-Cutter, the only one of its type in Australia, to create a very tight radii on the corners on some of the architectural elements. No additional services or treatments were required before or after installation as the stainless steel was procured with a protective film that remained on the product through the manufacturing process until the installation was complete.

Townsend Managing Director and CEO Russ Hill stated that the company was excited when selected for this prestigious development. The complexity of the project presented many challenges which Townsend was able to meet through its skill and experience, resulting in a finish which met the brief set by Westfield and its architects.

Images courtesy of Townsend Group.

This article is featured in Australian Stainless magazine - Issue 50, Summer 2011/12.

Stainless Afloat

Synergy of Lightness and Strength

Artist Wendy Mills’ interest in an ancient Sumerian myth helped bring her vision to reality for a stainless steel sculpture at Willoughby City Council’s new cultural centre.

Described as the cultural home of the North Shore, The Concourse (Chatswood, NSW) incorporates a concert hall, theatre, library, outdoor urban screen, restaurants and retail stores.

Council worked through Pamille Berg Consulting to commission Ms Mills to create an artwork for the library’s water court, which is located below ground level. The 6.1m sculpture, fabricated by ASSDA Accredited Fabrications Australia, is visible from above as well as from within the library.

Fabrications Australia fabricated the sculpture from 50mm x 50mm x 3mm square hollow sections of grade 316 stainless steel and applied a mirror polish. The joins were TIG welded and carefully ground smooth to ensure a high quality finish.

The sculpture is mounted on a ‘blade’ made from 12mm grade 316 plate that was painted to reduce visibility within the water, so the sculpture appears to float on the surface. As the support structure is bolted into the floor immediately above a carpark, extensive water proofing was required.

Ms Mills said the sculpture was more than 2 years in the making from when it was first conceived. Fabrications Australia and Consulting Engineer, Bernie Davis from Opus, worked together with her design to overcome challenges such as the structural support and ensure a proper balance of geometry, constructability and aesthetics.

Mr Davis said it was the team focus on this total balance that ensured a happy client.

Fabrications Australia Director Shannon Molenaar said the project was a true collaboration that evolved over time. Key issues for the fabrication team were structural integrity and long-term durability.

Ms Mills said she chose to work with stainless steel because no coatings were required. She wanted a mirror finish as it requires very little maintenance and it reflects the environment, making the artwork seem lighter.

For this piece, she envisaged a form of transport halfway between a plane and a boat that would sit lightly on the surface of the water as if it is about to take off, yet from above it would appear like a winged insect that has just landed. Her goal was to create a ‘stillness’ – a space for reflection, transition and transformation.

She said her initial concepts of a sky boat and transition tied in beautifully with the Sumerian myth of Inanna and the location within the library water court in the cultural precinct. According to the myth, Inanna (the queen of heaven) travels in her sky-boat to visit Enki (the lord of wisdom) who lives in a watery abyss and gives Inanna divine decrees to transform her city into a new centre of civilisation and culture.

The end result of this successful collaboration is an artwork that purveys a sense of peacefulness while showcasing the versatility and durability of stainless steel in a water environment.

Images courtesy of Wendy Mills.

This article is featured in Australian Stainless magazine - Issue 50, Summer 2011/12.

Brewery to Excel with Local Fabrication

A worrying trend among Australia's major resource companies is the increasing amount of engineering, detailing and fabrication work being sent offshore - a move that has had significant impact on local fabrication. But there are some positive signs in the food and beverage sector that local fabricators are more than capable of meeting design and fabrication expectations.

When ASSDA member and Accredited Fabricator, A&G Engineering, put in a bid to build 10 x 100 hectolitre beer fermenters for Casella Estate - a company best known for their Yellowtail wine label - they had to compete against companies as far away as Europe for the coveted project.

But A&G had a few advantages over the offshore companies: they had worked with Casella before, fabricating 88 x 1.1 million litre wine tanks for the company’s tank farm in Yenda, NSW; they have supplied stainless steel tanks to Australia’s leading breweries, wineries and beverage companies; and they are one of the largest users of stainless steel in Australia.

A&G’s win is an important victory for the Australian industry as a whole and another milestone for A&G Engineering, which was founded in 1963.

The five-month Casella Brewery project, completed in August 2011, saw 25 of A&G’s 200 staff use 65 tonnes of 304 grade stainless steel (including 2-4mm coil and 8mm plate) to build the 10 vessels.

A&G’s Design Manager Heath Woodland said the tanks were designed to AS1210-2010 pressure vessel standards, in order to withstand a pressure rating of 115kPa.

The stainless was welded with A&G’s semi-automated welding process and the internal welds were polished to achieve a 0.6Ra surface finish, to meet beverage industry standards of a food grade finish.

A&G built the vessels at their Griffith and Irymple plants, before transporting them to Yenda. With the beer fermenters now in place, it is hoped the Casella Brewery will be operational by the end of 2011.

Images courtesy of A&G Engineering.

This article is featured in Australian Stainless magazine - Issue 50, Summer 2011/12.

Stainless Vision

Inspiration from Medieval Tale

The lance used by St George to slay the dragon in Medieval mythology - Ascalon - has inspired a stunning addition to Perth’s St George’s Cathedral forecourt.

Ascalon portraitAscalon, designed by Perth artist Marcus Canning and New York based Christian de Vietri, was chosen as the winning piece from an international competition attracting 99 entries.

The sculpture features an 18m grade 316 stainless steel telescopic pole with a mirror finish, surrounded by a billowing white fibre reinforced plastic (FRP) ‘cape’, which represents St George on his steed.

ASSDA Accredited Fabricator Diverse Welding Services was commissioned by engineers and project managers Capital House Australasia to create the pole, which weighs about 2 tonnes.

Capital House managing director John Knuckey said the artists had a vision for the sculpture and his team’s role was to make it happen. He said the strength of the central pole was a concern for the artists, while the structural engineers were strongly focussed on minimising vibrations and maximising stiffness.

Capital House’s research indicated that 316 would be the most appropriate grade and their interest in selecting from standard sections determined the dimensions.

“The pole also had to be dead straight because people would pick it by eye if it wasn’t,” Mr Knuckey said. “We had no desire to compromise on quality but we were concerned that polishing would be too expensive, so originally only the bottom third was going to be mirror polished. In the end Diverse Welding Services said they could achieve a mirror finish on the entire pole and they did an excellent job.

“At first we weren’t sure who to trust with the job, but once we had visited Diverse Welding’s factory, we knew they were the right people.”

Diverse Welding Services director Karl Schmidt said their main challenge was determining the weld design to ensure the work conformed to AS1554 Part 6.

They welded together stainless steel pipe in differing dimensions to create the telescopic shape of the pole and produced joining spigots from plate (supplied by ASSDA Member Stirlings Australia), enabling the pole to be bolted to the FRP ‘cape’.

Ascalon joining spigotsThe sections were rotated on horizontal positioners and welded using stainless steel flux cored wire and TIG welding processes. The pole was given a full mirror finish and passivated using a citric based product.

Artist Marcus Canning said Diverse Welding and Capital House were fantastic to work with on the project.

“It was a late decision to shift to a telescopic design, which increased the complexity of the job under a pressured timeline, but they rolled with it and did what they had to do to get the job done, and done right,” Mr Canning said.

“The pole is such an important element to the work now it’s in situ and responding to the elements - the mirror finish makes its quality shift dramatically throughout the day and night as lighting conditions change.”

The sculpture was created following a $500,000 donation from Australian prospecting geologist Marc Creasy to the Cathedral Arts Foundation, and the only guideline was the theme of St George and the dragon.

Images courtesy of Marcus Canning.

This article featured in Australian Stainless magazine - Issue 48, Autumn 2011.

Pipes run half marathon

That deserves a drink!

A joint venture between two ASSDA Accredited Fabricators has seen 21km of stainless steel pipe work installed as part of the greenfields Bluetongue Brewery recently completed at Warnervale on the Central Coast of NSW.

Bluetongue Brewery 3The $120 million Pacific Beverages brewery, which officially opened in November 2010, contains more than 2000 tonnes of stainless steel, including more than 120 tonnes of tube sourced in Australia through ASSDA Sponsor Atlas Steels.

The brewery construction was overseen by German brewery manufacturer Ziemann, who contracted ASSDA Accredited Fabricators TFG Pty Ltd and TripleNine Stainless Pty Ltd as the sole installation partners for the stainless steel components.

TFG/TripleNine assembled and installed the pumps, heat exchangers, valves, brewing vessels and fermentation tanks, as well as fabricating and installing all the pipework.

TFG Manager Tom Moultrie said they used grade 304 and 316 tube ranging from 25mm to 100mm in diameter. To ensure accuracy, speed, efficiency and quality, specialist sanitary welders orbital welded the tube on site. The construction phase lasted 8 months and, at the height of the project, TFG/TripleNine had 60 fabricators on site.

Mr Moultrie said the scope and size of the project were the motivating factors behind the first-time joint venture.

Bluetongue Brewery 2“The joint venture made sense because both companies could continue to service our other clients during the construction phase, as well as meeting the tight deadline,” he said.

Ziemann project manager Sven Mauchnik said TFG/TripleNine were chosen due to their brewery experience and their ability to match the tight time schedule.

“We were able to build the complete brewery within 8 months and make the first brew on the original planned date,” Mr Mauchnik said. “The quality TFG/TripleNine delivered was beyond our expectation, which is obvious for everybody who visits the brewery.”

TFG/TripleNine installed 48 silos, including fermentation and storage vessels around 18m high. Two cranes were used to install four vessels a day.

The fermentation tanks and brewing vessels were manufactured abroad by Ziemann to assist in meeting the tight time frames.

The Bluetongue Brewery is unique in its design because it has twin-stream brew houses under one roof, which allow for brewing flexibility.

This article featured in Australian Stainless magazine - Issue 48, Autumn 2011.

Grade 431

A versatile, high strength martensitic stainless steel

Martensitic stainless steels are a less well-known branch of the stainless family. Their special features – high strength and hardness – point to their main application area as shafts and fasteners for motors, pumps and valves in the food and process industries.

The name “martensitic” means that these steels can be thermally hardened. They have a ferritic microstructure if cooled very slowly, but a quenching heat treatment converts the structure to very hard martensite, the same as it would for a low alloy steel such as 4140. Neither the familiar austenitic grades (304, 316 etc) nor the duplex grades (2205 etc) can be hardened in this way.

Grade 431 (UNS 43100) is the most common and versatile of these martensitic stainless steels. It combines good strength and toughness with very useful corrosion resistance and in its usual supply condition can be readily machined.

Chemical Composition

The composition of 431 specified in ASTM A276 is given in Table 1 below.
Grade 431_Table 1

 

 

 

The inclusion of a small amount of nickel in grade 431 is different from most other martensitic grades. This small but important addition makes the steel microstructure austenitic at heat treatment temperatures, even with such a high (for a martensitic grade) chromium content. This high temperature austenite enables formation of hard martensite by quenching.

Corrosion Resistance

The relatively high chromium content gives grade 431 pitting, crevice and general corrosion resistance approaching that of grade 304, which is very useful in a wide range of environments including fresh water and many foods.

Grade 431 has the highest corrosion resistance of any of the martensitic grades. Corrosion resistance is best with a smooth surface finish in the hardened and tempered condition.

Grade 431 is sometimes used for boat shafting and works well in fresh water but is usually not adequate for sea water.

Heat Resistance

Grade 431 has good scaling resistance to about 700°C but, as martensitic steels are hardened by thermal treatment, any exposure at a temperature above their tempering temperature will permanently soften them. 600°C is a common limit.

Mechanical Properties

The application of grade 431 is all about strength and hardness. Table 2 below lists mechanical properties of the grade annealed and in hardened and tempered “Condition T”.

Grade 431_Table 2

 

 

 

 

 

 

 

 

 

 

 

Heat Treatment

A feature of grade 431 is that it can, like other martensitic steels, be hardened and then tempered at various temperatures to generate properties within a wide spectrum, depending on whether the requirement is for highest possible hardness, or best ductility, or some balance between these. Hardening is by air or oil quenching, usually from 950-1000°C.

The tempering diagram in Figure 1 shows properties typically achieved when the hardened steel is tempered at the indicated temperature. A tempering temperature within the range 580 – 680°C is usual. Tempering between 370 and 570°C should be avoided because of resulting low impact toughness.

Tempering should follow quenching as quickly as possible to avoid cracking. Softening is usually by sub-critical annealing, by heating to 620 – 660°C and then air cooling.

Grade 431_Figure 1

Physical Properties

Density

7700kg/m3

Elastic Modulus

200GPa

Thermal Expansion (0-100°C)

10.2µm/m/°

Fabrication

Machining is readily carried out in the annealed condition, and also in the common Condition T. Modern machining equipment enables high speed machining at this hardness of about 30HRC.

Welding of 431 is rarely carried out — its high hardenability means that cracking is likely unless very careful pre-heat and post-weld heat treatments are carried out. If welding must be done this can be with 410 fillers to achieve high strength but austenitic 308L, 309L or 310 fillers give softer and more ductile welds.

Cold bending and forming of hardened 431 is very difficult because of the high strength and relatively low ductility.

Forms Available

Grade 431 is available in a wide range of bar sizes — virtually exclusively round but some hexagonal. Most other martensitic grades are only available in round bar, although the higher carbon 12% chromium “420” series of grades may also be available as hollow bar and as blocks and plates intended for tooling applications.

Alternatives

Another approach to high strength stainless steel bar is a precipitation hardening grade, such as 17-4PH. These grades have similar corrosion resistance and offer some advantages in producing long, straight, higher strength shafts.

Shafts to be used in more corrosive environments are likely to be a duplex or super duplex or nitrogen-strengthened austenitic grade. These, however, have lower achievable strengths than martensitic or precipitation hardening grades.

Specifications

Grade 431 is usually specified by ASTM A276, with composition as in Table 1. In the Australian market, however, there are usually two deviations from A276:

  1. It is most common to find this grade supplied in the hardened and tempered “Condition T” to AS 1444 or BS 970, with specified tensile strength of 850-1000MPa. Yield and elongation are typically in conformance with the limits listed above. ASTM A276 only lists a Condition A version of grade 431 — this is the annealed condition that would normally require hardening heat treatment after machining.

  2. The second deviation is that it is usual for cold finished stainless steel bars stocked in Australia to be with the all-minus ISO h9 or h10 diameter tolerances. Hot finished “black” bars with all-plus ISO k tolerances may also be available.

 

This article was prepared by ASSDA Technical Committee member Peter Moore from Atlas Steels. Further technical advice can be obtained via ASSDA’s technical inquiry line on +617 3220 0722.

This article featured in Australian Stainless magazine - Issue 48, Autumn 2011.

Whole of life costing

19 years plus points to stainless

A fresh focus on whole-of-life costing at Gold Coast City Council has led to the specification of stainless steel for long-term structures in the foreshore zone.

The philosophy, which was adopted following the publication of a study by Griffith University and GCCC, is likely to have flow on effects to other councils and government bodies.

GCCC’s co-ordinator of technical governance Paul Conolly said the seed was planted in 1998 when Council’s Technical Services Branch specified stainless steel for a modular toilet structure in a foreshore zone park. The material was deemed at the time to be cost prohibitive on a capital expenditure basis but the process sparked an interest in lifecycle costing.

Mr Conolly said Council’s growing interest in lifecycle costing, combined with an expectation among locals and tourists that public facilities showcase a ‘resort style’ finish, had brought the focus back to stainless steel in recent years. “There has been a clear trend towards lighter, more open structures for public facilities and these lend themselves to steel work,” he said. “A lot of our public facilities are in the foreshore zone and some materials weren’t performing as well as we wanted, so we started to look at corrosion issues and how to best manage this. We started using stainless steel for critical elements, such as joint interfaces for concrete works; bolts, brackets and cleats for boardwalks; and for high use facilities such as rubbish bins.

“Our observations led us to believe that stainless was the way to go in the foreshore zone, but we had no tangible justification which the designers could use to validate the decision for our asset custodians. We needed clear evidence to prove the initial cost of stainless steel was justified over the life of the structures.”

Griffith University scholarship student Jordan Cocks was called on to research the topic in conjunction with industry affiliate GCCC as partial fulfilment of his Bachelor of Civil Engineering.
Mr Cocks investigated multiple structural scenarios from the perspective of what would represent the most cost-effective solution: hot dipped galvanized (HDG) steel, paint systems, duplex systems using both HDG and paint, or stainless steel.

The result was a report containing a design guide, a life cycle cost analysis and a life cycle costing spreadsheet for structures in the foreshore zone. The report indicates stainless steel is a viable option based on cost alone for structures with a design life greater than 19 years. Conversely, the study indicates a HDG coating would theoretically have a life span of 14 years, leaving the exposed steel subject to rapid corrosion unless protected by an increasingly costly maintenance regime.

Mr Conolly said the report had delivered a workable tool enabling designers to input various parameters, such as current prices and design life, producing a guide for selection of the appropriate material or finishes based around optimising whole-of-life costs.

Similar principles were used to shift the specification of a park arbour in Broadbeach towards stainless steel. The material was essential due to the warm, humid environment of the foreshore, regular spraying with water and fertiliser, and the fact that the arbour would have plants growing over it that would take many years to fully establish. The report has now been used to guide material selection for a number of projects, including toilet blocks in Jacobs Well, Miami (pictured) and Burleigh Heads.

“With these projects, we have gone to the asset custodians and our first question was – what is the design life?” Mr Conolly said. “The report has helped reinforce the need for a ‘cradle to grave’ approach to responsible and sustainable asset management encompassing all stakeholders. This includes not just the designer and asset custodian but all the operational and maintenance personnel involved with a structure.

“For stainless steel structures, the asset custodians now recognise that to retain an asset over the long-term and to satisfy the whole of life cost advantage there must be regular wash downs as part of the maintenance program. The higher initial construction costs are offset by the lower cost regular wash downs which form the major component in the new maintenance regimes. The buildings are also being designed to be hosed from ceiling to floor. The overall process has really helped improve the relationship between the asset custodians, designers and maintenance staff.”

Mr Conolly said the report had also been used to promote the use of stainless steel in playground equipment and shade sail structures. “It is just a matter of making that little leap towards recognising the whole-of-life cost and ensuring delivery of a durable product – it’s not rocket science, just common sense when you think about it.”

GCCC is also now favouring ASSDA Accredited Fabricators and looking to ASSDA to provide third party technical expertise or adjudication should conflicts arise relating to material performance. The ASSDA Accreditation Scheme requires fabricators to conform to stringent standards of competence, training and education and encourages a consistently high standard through industry self-regulation.

ASSDA Executive Director Richard Matheson said GCCC’s decision to favour ASSDA Accredited Fabricators and specify stainless steel in the foreshore zone was a welcome one. “I believe we will see this initiative mirrored by other councils and government bodies in the near future,” Mr Matheson said.

“There is no doubt that informed specification and quality fabrication by people who know and understand the material will offer long-term cost savings and extend the life of the product. This is why ASSDA places so much emphasis on education and technical expertise – Councils and other government bodies need to get it right the first time and ensure value for money for their constituents.”

Mr Conolly said for long term structures, stainless steel was becoming the default specification in the foreshore zone and the trend was even moving inland.

“We’re asking the question: what will look and perform best from cradle to grave? It’s making people think differently,” he said.

Download the the final report here (4.6MB) - Whole of Life Cost Comparison and Cost Benefit Analysis for Steel Structures Constructed in the Foreshore Zone.

GCCC close up GCCC close up 2
This article featured in Australian Stainless magazine - Issue 48, Autumn 2011.

Outstanding Design and Specification

Sunshine coast stainless shines 18 months later

An impressive span of stainless steel balustrade at Bulcock Beach, Caloundra on Queensland’s Sunshine Coast is demonstrating that good design and specification achieves stunning results that last the distance.

The $8.5 million Sunshine Coast Council Bulcock Beach redevelopment, which was opened in late 2009, incorporates over 300m of grade 316 stainless steel balustrade.

PLACE Design Group’s project landscape architect and lead consultant Ben Stevens said the balustrade was a collaborative design effort between PLACE Design Group and ASSDA Accredited Fabricator Bell Stainless.

“We wanted a clean, simple design that didn’t detract from the magnificent sweeping views of Pumicestone Passage, and one that stood up to the front-line marine location,” Mr Stevens said. “We worked closely with Bell Stainless to refine the design. They had some great ideas to maximise long term performance of the stainless steel, while reining in expenditure.”

The final design included 100mm x 50mm rectangular hollow sections (RHS) for the main balustrade stanchions. Because RHS and circular hollow sections (CHS) were available pre-polished from ASSDA Sponsor Fagersta Steels, it meant that significant cost savings could be achieved in the fabrication and finishing stages. The use of standard RHS sections instead of plate and flatbar significantly minimised the inclusion of crevices in the detailing.

“Because we managed to achieve the required balustrade budget allowance and satisfy Council about the long-term durability of a stainless steel balustrade system we think an outstanding outcome has been achieved,” Mr Stevens said.

Bell Stainless managing director David Vine said this was a landmark project for the company in many ways. “We saw an opportunity to raise the bar for coastal commercial installations,” he said.

“After exploring the project’s specified finish, we developed a hand-polishing technique that worked extremely well. We’re really pleased with how it’s performing.”

Bulcock Beach, Caloundra

Images courtesy of Chelmstone. Photography by Greg Gardner Photography.

This article featured in Australian Stainless magazine - Issue 48, Autumn 2011.

Remaining competitive and profitable by James Johnson, Millatec Pty Ltd

Posted 23rd September 2009

679566_83998594

Now is the time as an owner of a small or medium enterprise to move back into the coalface and be involved in all facets of your business. As a business owner, no one spends less money, identifies opportunities to improve productivity more or reduces waste better than you.

In the current economic climate it seems especially pertinent to discuss tools that can help you remain competitive and achieve break-even or be profitable.

The four key areas are:

  1. Financials
  2. Human resources
  3. Marketing
  4. Systemisation

Controlling your finances

When it comes to managing your finances, structure is vital. It is imperative that you plan your cash flow on a week-to-week basis to ensure debts can be paid when due. Ensure tax liabilities are allowed for. If you can’t meet your payment dates, talk to your creditors or the ATO: most will work with you, but they will take action if you are not open and honest.

To effectively monitor spending and avoid unexpected cash flow shortfalls, your financial reporting needs to be up-to-date. An ideal target is end of month plus 10 working days. To ensure reporting and recording is useful, filing of all financial transactions – including accruals – is vital.

A network of support is fundamental to the sustainability of your business. It is important to establish and maintain an open and honest relationship with your bank – during times of profit and of loss. The bank will understand the long-term fluctuations of your business and will be your best source of information on current services that suit your needs. Remember, banks do not want to see you go out of business – they will help you stay afloat.

For example, they have developed a range of new products to help with cash flow.

The current economic climate is a great time to negotiate for better deals – from freight to materials – and it is an ideal time to negotiate new leases.

Human resources: maximising productivity

Employees are the bones of your company. Have high expectations of your staff and make them known. Just as important as setting a high standard of work is letting your staff do their job and being flexible enough to make them want to stay. At the same time it is advantageous to not have any staff member who you are afraid to lose: no one should be irreplaceable.

A large part of managing human resources is managing risk. Employee training is invested time and money. Maintaining low staff turnover means retention of knowledge within the company and makes thorough training a valuable investment.

Marketing: sending the right message

If you want to maintain and grow sales, first and foremost be a marketing company. Invest in marketing as you would a new machine: work out the investment and expected return and research what is right for your business.

It is a great time for change so try the things that you have been putting off during busy periods.

The key is remembering that sales must lead production, and production must support the promise. This is a constant battle: they both need – and work just as hard as- the other. This needs to be reinforced daily.

Systemisation

Linking systems together means you maintain control of the business. Report and record weekly, monthly and quarterly. This not only helps in tracking financial movements but also ensures that in the instance of staff absence, the system will remain functional.

Linking the following systems is a good place to start:

  • Quoting (capture all costs)
  • Processing orders (no job starts without a written PO)
  • Producing job cards
  • Purchase orders (nothing gets in without one)
  • Time capture (measure productivity)
  • Stock
  • Invoicing (nothing gets out without one)
  • Financial accounting

If you have had a crippling 12 months, it is not too late to recover and come out stronger, wiser and more profitable.

This article featured in Australian Stainless magazine - Issue 46, Winter 2009.

For stainless apprentices

Posted 23rd September 2009

IMG_5599

At the beginning of 2008, ASSDA was successful in its application for funding from the Federal Government for a project focused on the integration of e-learning into industry. The funding has seen ASSDA create a Workforce Development Strategy and a Flexible Learning Delivery Pathway incorporating e-learning, with plans to develop an additional e-learning module titled Practical Skills of Surface Treatment to complement the existing Gas Tungsten Arc Welding Module.

The Workforce Development Strategy provides an industry-wide framework in which to address the workforce challenges for the stainless steel industry: skills shortages, staff retention, knowledge retention. This document assisted ASSDA in defining what the industry requires in training, skills development and the retention of employees.

The body of the project sees ASSDA working in conjunction with SkillsTech Australia and multiple industry partners to develop e-learning as a form of theory training for apprentices aiming to acquire their qualification in stainless steel fabrication.

ASSDA created a Flexible Learning Delivery Pathway that gives apprentices and employers the choice of conducting training both online and within the workplace. This form of training is beneficial to the apprentices as they are able to work at their own pace, in a location of their choice and in a nonthreatening learning environment. For the employer the pathway is economical as the apprentice can conduct their study in the workplace, therefore reducing time spent away from the workplace.

Using ASSDA’s Stainless Steel Specialist Course and existing resources within the TAFE system, SkillsTech Australia has developed an e-learning system based on the required competencies for a qualification in fabrication, with a particular focus on the unique requirements of working with stainless steel. These training modules offer learning through video, audio, text, images and interactives that are interesting to the apprentice whilst teaching them the underpinning knowledge they require to develop a skill.

In March 2009, 12 apprentices were inducted into the e-learning program for Stage 1a at SkillsTech. This stage is now complete and feedback from the apprentices has been extremely positive. Stage 1b has now commenced and will see the apprentices training solely within the workplace with a workplace mentor to oversee their theory training and instruct them in their practical experience.

This is an exciting development aimed at positioning e-learning as the training method of choice within the stainless steel industry and will help meet ASSDA’s goal of building a strong workforce with a focus on quality and innovation.

If you are interested in viewing the Workforce Development Strategy or learning more about the learning options becoming available for apprentices, call ASSDA on (07) 3220 0722.

This article featured in Australian Stainless magazine - Issue 46, Winter 2009.

Combining strength & style

Posted 23rd September 2009

wine racks

Melbourne based designer Pierre Le Roux began working with steel 15 years ago, more recently with stainless. “I love the high-tech, reflective quality of stainless,” he said.

Le Roux’s popular custom made wine rack design has attracted clients from both retail and domestic markets. Often doubling as a wallscreen, the unique rack is fabricated from grade 304, 3mm stainless steel sheet supplied by ASSDA member Dalsteel Metals Pty Ltd. Each bottle holder was hand polished to achieve a personal finish.

Le Roux’s company produces custom made stainless pieces including sculpture, architectural and landscape features. Stainless domestic furniture and screening is becoming increasingly sought after and demand is largely surpassing supply. “The most common thing people say to me is that there’s just nothing out there, so they come for something unique,” Mr Le Roux said.

Creating one-off pieces to meet client specification means customer satisfaction and artistic flexibility. “This makes for a very rewarding profession,” said Le Roux.

wine racks

This article featured in Australian Stainless magazine - Issue 46, Winter 2009.

Aussie icon immortalised in stainless

Posted 23rd September 2009

P2181026

A 200-year-old Australian icon has been immortalised in a new stainless steel home. The ‘Tree of Knowledge’ is cherished as the birthplace of Australia’s labour movement. It is believed that shearers gathered under the tree in 1891, striking for workers’ rights.

The $6 million timber and stainless steel memorial was officially unveiled earlier this year in Barcaldine, Queensland to house the remains of the tree following its death in 2006. ASSDA Accredited fabricator St Clair Sheetmetal supplied and installed 6.5 tonnes of mirror finished stainless steel cladding to achieve a highly reflective surface and provide a durable and stunning monument.

“We clad all the trusses of the mirror finish stainless steel so it looks like a cathedral inside,” David St Clair said. “The panels make the light reflect down underneath and takes away the brown of the building,” he said. The heritage-listed site is now protected from the elements and the Tree of Knowledge has been given a new lease on life.

P2181026

trythisone

This article featured in Australian Stainless magazine - Issue 46, Winter 2009.

new potential for mirror finish

Posted 23rd September 2009

HV2

A multi-award winning building design is using stainless steel to reduce its visual impact. ‘Zoo Booth’ is a small free-standing kiosk at Victoria’s Healesville Sanctuary and – thanks to its mirror finished stainless cladding – is very well camouflaged! The design concept came from Melbourne company TS1 Pty Ltd, who launched Transportable Design 1 (TS1) Pop-up Buildings in 2006.

For the unique application at Healesville, ASSDA member Stainless Sections provided grade 304, 1.2 mm stainless steel sheet, polished to a No. 8 mirror finish to reflect the organic surroundings. Stainless Sections’ Roy Carter said mirror finished stainless was the ideal material to achieve low visual impact in a natural setting whilst maintaining durability in an elemental location. TS1 is an expandable, relocatable space, completely construction-free and can be assembled in one day. It has become a popular solution to extending a living or work place, retail space or even for use as a spare bedroom.

TS1 Director Nadja Mott said her vision reflected a transient, nomadic lifestyle: her creations are transportable, low impact and fully recyclable. Mr Carter said the emerging market for reflective buildings has prompted further innovation to achieve solar reflection capture.

“This material allows concave shaping to be achieved which enhances marketing opportunities for mirror finished stainless in the growing green building market,” Mr Carter said.

HV2

HV1

LOUVER_02

This article featured in Australian Stainless magazine - Issue 46, Winter 2009.

ecologically sustainable stainless design

Posted 23rd September 2009

VLdemo

With the population boom leaving less open space available for traditional garden beds, stainless steel is helping to reintroduce Mother Nature to an increasingly unnatural environment. Ecologically sustainable design (ESD) promotes the use of existing resources to maintain biological balance. This allows for natural light and ventilation, reduced energy usage, water consumption and greenhouse gas emissions. The need for this type of specification is so apparent that the Government has established the Green Building Council of Australia (GBA) to advocate sustainable property development.

City of Melbourne was among the first to demonstrate ESD in Australia, with its own office building Council House No.2 (CH2). Green features such as natural lighting and temperature control earned CH2 the first GBA six-star Green Star Certified rating.

Among CH2’s green features is vertical landscaping created by ASSDA member Ronstan Architectural. The specialist tensile contractors at Ronstan developed support systems for these gardens, fixing grade 316 stainless mesh and cables to the building’s exterior. Ronstan’s Rowan Murray said the benefits of green façades are now widely acknowledged. “Many new buildings include elements of active and passive solar design and have some sort of façade as a physical shade.

Using plants as a shade element is becoming increasingly popular and there are opportunities for the stainless steel industry to provide essential structure as a platform for plant growth,” he said. ‘Living walls’ can be more beneficial than conventional shading systems, both economically and environmentally. The plant’s ability to cool via evapotranspiration provides natural insulation, lowering the building’s running costs, while producing oxygen at the same time. “This in itself provides a direct social and psychological benefit to the building occupants, driving people to engage with the building,” Mr Murray said.

“People actually enjoy the close proximity to plant life and stainless steel plays a big part in making this possible,” he said. Mr Murray said design considerations are important when specifying for this type of application, particularly “dead weight” from suspended sheet and plant matter, wind and rain force, but careful design ensures an efficient lightweight stainless solution. Specifying ESD is also beneficial to your budget.

“We love to see stainless used in intelligent ways with façades and the good news is that despite the current climate we are gradually seeing developers begin to take a more responsible approach to the upfront cost of ESD,” Mr Murray said. A recent GBA report denotes the value in green features, such as stainless façades, claiming the study proved that “green buildings make occupants healthy, wealthy and wise”. GBA recently awarded its 100th green star to a sustainable interior design at Stockland Head Office in Sydney.

Advertoria insert 02

Advertorial insert 01

This article featured in Australian Stainless magazine - Issue 46, Winter 2009.